
Mobiles on Cloud Nine: Efficient Task Migration
Policies for Cloud Computing Systems

Lazaros Gkatzikis

KTH Royal Institute of Technology

Stockholm, Sweden

Iordanis Koutsopoulos

Athens University of Economics and Business (AUEB) and

Centre for Research and Technology Hellas (CERTH), Greece

Abstract—Due to limited processing and energy resources,
mobile devices outsource their computationally intensive tasks to
the cloud. However, clouds are shared facilities and hence task
execution time may vary significantly. In this paper, we investigate
the potential of task migrations to reduce contention for the
shared resources of a mobile cloud computing architecture in
which local clouds are attached to wireless access infrastructure
(e.g. wireless base stations or access points). We devise online
migration strategies that at each time make migration decisions
according to the instantaneous load and the anticipated execution
time. We explicitly take into account the interaction of co-located
tasks in a server and the cost of migrations. We propose three
classes of migration policies, ranging from fully uncoordinated
ones, in which each user or server autonomously makes its
migration decisions, up to cloud-wide ones, where migration
decisions are made by the cloud provider. The key underlying
idea is that a migration should occur only if it is beneficial for
the processing time of the task, including the migration delay.

I. INTRODUCTION

Mobile applications (e.g. augmented reality, speech recog-

nition, games) have become more sophisticated than ever in

terms of computing requirements and data generation. The

proliferation though of 4G wireless access technologies, such

as LTE, that support high communication rates and Quality

of Service (QoS) enables mobile devices to offload their

computationally intensive tasks to the cloud. The later asset

has given rise to what is known as mobile cloud computing
(MCC).

We consider the architecture depicted in Fig. 1 that brings

into stage cloud facilities together with mobile wireless de-

vices. Mobile devices access the cloud through readily avail-

able hubs like 4G/LTE base stations (BS) or WiFi access

points. Cloud servers are attached to the points of wireless

access, forming local clouds that are directly accessible by

mobile users and hence avoid the additional communication

delay of the Internet.

Virtualization is a key ingredient of MCC that enables

agile consolidation and parallel execution of diverse mobile

applications on the same physical machine (server), each

hosted in a separate Virtual Machine (VM). The problem that

arises is how to best leverage cloud resources, in particular

computation capacity, so as to minimize execution time of

mobile tasks. We suggest that this goal can be efficiently

realized through VM migration policies that enable dynamic

reconfiguration of the cloud. The key underlying idea is that a

migration should occur only if it is beneficial for the processing

Fig. 1. Mobile Cloud Computing architecture

time of the task, including the migration delay.

In order to demonstrate the potential of VM migrations, we

provide the following simple motivating example. Consider

a mobile CPU intensive task of 1010 CPU cycles. Initially

the user uploads the task for execution to its current cloud

server of available CPU capacity 106 cycles/sec. Once the

task has been completed by 50% the user moves in range

of a local-cloud/BS of double the available CPU capacity,

2 × 106 cycles/sec. If the task stays on the initial server

it will be completed after 5000 sec or 1.39 hours. Instead,

given an interconnection link of 10Mbps between the two

BSs and a current data volume of 1010 bits a migration to

the new server will cost 1000 sec, and another 2500 sec

for execution. Thus, the optimal strategy is to migrate the

task to the local server immediately, leading to a completion

time of 3500 sec or 0.97 hours, i.e. an improvement by

(1.39− 0.97)/1.39× 100% � 30%.

A. Mobile Cloud Computing challenges
Efficient management of the cloud infrastructure is a chal-

lenging task due to the highly dynamic and unpredictable

nature of the system.

First, the pattern of instantaneous resource demand varies

with time and location as new tasks arise continually at various

locations, while others complete service. Second, available

processing capacity is varying with time, due to the unpre-

dictable effect of coexistence of VMs on the same physical

server and their varying patterns of access to shared resources

(e.g. CPU, caches, network, I/O) at different phases of their

execution. This results in a multitenancy overhead that is task-

dependent and difficult to model or predict.

Third, tasks are usually accompanied with a time-varying

data volume, that may be increasing, decreasing or constant

with time, depending on whether the task generates new

information, discards some data as processing proceeds or does

not modify data respectively. The time required to migrate a

task to another server depends decisively on this data volume.

Finally, user mobility introduces additional challenges, since

at each time instant a user has direct access only to a certain

subset of servers, namely those attached to her current BS.

In general, communication with a remote cloud server takes

place over WAN connections and hence introduces significant

delay. Thus, migrations should be such that the task ”follows”

the mobile user, i.e., the server that executes the task should be

”close” to the user in terms of anticipated delay for retrieving

the results of the task.

B. Related work
Virtualization allows diverse tasks to run over a shared

hardware platform. Each task is hosted on its own VM, which

provides an isolated execution environment. However, oper-

ation over the same physical machine introduces significant

contention for shared system resources. The problem of noisy-

neighbours, where co-located tenants cause significant and

unpredictable performance degradation (a.k.a. multitenancy

cost), has been reported by several cloud customers (e.g. [1],

[2]) and has even led companies to abandon the cloud [3].

Similar performance limitations have been observed when

computationally intensive scientific tasks were executed on

existing cloud facilities [4].

Several works attempt to perform analytical [5] or experi-

mental (e.g.[6],[7]) estimation of the multitenancy effect. The

former though require a priori knowledge of the resource

requirements (CPU, Memory, I/O) of each task, while the latter

perform extensive profiling of different types of cloud tasks.

However, trace data from the Google cloud facility [8] reveal

that significantly diverse tasks exist in the cloud and hence

a characterization through profiling is impractical. Thus, we

propose that multitenancy effect has to be predicted through

online measurements as tasks are being executed.

The issues above motivate the need for task migration. Mi-

gration mechanisms enable dynamic reconfiguration of clouds

and hence have attracted the interest of both the research

community and virtualization companies. Indicatively, the

capability of VM migration across remote servers [9] was

recently incorporated in the latest version of vSphere, the

commercial virtualization platform of VMware. In vMotion,

which is the migration scheduler of vSphere, migrations are

performed so as to keep average CPU and memory utilization

balanced across servers. Instead, we propose that migrations

should be performed according to execution time as this is

estimated at running time.

Recent work [10] provides an experimental evaluation of

the performance benefits of migrations, whereas max-weight

inspired policies are proposed by [11] to maximize throughput

through VM allocation. However, the multitenancy effect, the

evolving data footprint and the cost of migration that signif-

icantly affect the actual execution time are not considered.

In [12], the authors propose a system that monitors resource

usage and performs a migration whenever a Service Level

Agreement (SLA) is violated for a sustained period. Existing

schemes perform the VM assignment/migrations according to

the required resources or assume that multitenancy cost is a

priori known [13],[14]. Instead, we perform task migrations

according to the actual performance of the task as this is

observed online, which enables us to capture the impact of

multitenancy.

In addition, the impact of mobility has been considered only

in the scenario where a single task may migrate to a remote

server, instead of being executed locally at the mobile terminal,

a mechanism generally known as offloading. The resulting

energy and time savings have been analyzed in [15], where a

Markovian control framework is proposed. In a similar setting

the authors of [16] propose the CloneCloud offloading system.

Contrary to these works, we explicitly model the interaction of

multiple tasks and take into account the impact of migrations

on the cloud system as a whole.

A survey of the challenges and potential of VM migration

scheduling in the context of MCC are presented in [17].

Here, we formulate the VM allocation problem and devise

mechanisms that can be applied in real systems.

C. Our contribution
In order to adhere to a realistic scenario, we address the

online version of the problem, in which information about
the system dynamics is not available a priori, but rather it
is presented to the migration control engine, just before the
control decision is made. For example, the rate of arrival of

new tasks in each server is generally unknown. To counteract

this, we propose that from time to time the cloud facility has

to be reconfigured through VM migrations that reassign VMs

to the cloud servers.

The key contributions of this paper are as follows:

1) We develop lightweight task migration mechanisms that

capture the following cloud scenarios (a) a centrally coor-

dinated setup, where all migration decisions are taken by

a central migration control engine. This setup represents

the cloud-provider objective and rationale. (b) a server-

centric setup where a migration control engine resides in

each server and taken the migration decisions for tasks

on that server. (c) a task-centric one, where the migration

is decided autonomously by each task.

2) We develop criteria for migration that factor (i) the an-

ticipated delay to migrate the accompanying data volume

between servers, (ii) the anticipated remaining execution

time of the task at the new server.

3) We explicitly model the coexistence of several VMs on

the same cloud server through an associated performance

overhead, which depends on the number and the types of

coexisting tasks. This is continuously measured and fed

back to the entity that performs task migrations, generally

called hypervisor or VM monitor.

4) We capture the impact of mobility on the migration

strategy. The main idea is to migrate the task closer to

the user as execution approaches its end.

The rest of the paper is organized as follows. In Section II

we model interaction of tasks/VMs within the cloud. Sec-

tion III describes the proposed migration mechanisms that

capture mobility and interaction of co-located tasks. Numer-

ical results quantifying the performance of our schemes are

presented in Section IV. Section V concludes our study.

II. SYSTEM MODEL

A. Cloud architecture

We consider a Mobile Cloud Computing architecture that

consists of a set K of K cloud servers, which are attached to

wireless access infrastructure (Fig. 1). Such small-scale local

clouds provide processing capacity that is at the proximity of

mobile users. For notational simplicity, we assume that each

local cloud consists of a single server. Each server/local-cloud

j has fixed processing capacity Cj flops.

Any mobile user in range of a BS may directly access the

corresponding server. In addition, each server � is connected

over the Internet with any other server k through an overlay

link of bandwidth W�k (in bits/sec).

B. Application tasks

Application tasks are continually generated by mobile users

at various locations. We use the term task lifetime Ti to refer to

the total time that task i spends in the cloud. The task lifetime

consists of the following stages:

(i) Task Upload: Once a new task is generated by a user, the

source code and any input data required for the initialization

of the VM are uploaded to the cloud through the wireless

link between the user and the corresponding point of wireless

access. Then, the task execution is initiated.

(ii) Execution / Migration: This phase amounts to the

actual processing within the cloud. A task may be transferred

from its current server to a new one to continue execution

there. This process is known as task migration and may occur

multiple times during task execution.

(iii) Download: In this phase the task is completed and the

mobile user retrieves the final results through its current BS.

If the task host server is not in range of the mobile user, data

have to be transferred to a server that is accessible by the user.

Task i is characterized by its total processing requirements

Bi (in flops, or CPU cycles) and carries with it a progress

indicator xi ∈ [0, 1] that denotes the percentage of completion.

Task i is also accompanied by an evolving volume of data

in bits, di(xi). This pattern may be increasing, decreasing or

constant, modeling different types of applications that generate

new data or compress it as they evolve. We refer to this

accompanying volume of data as the data footprint of the

task. A typical CPU-intensive task of decreasing footprint

is video compression. Starting from an initial raw video of

several gigabytes we end up with a compressed video of

hundreds megabytes. On the other hand, many tasks such

as decompression of a data archive is characterized by an

increasing data footprints, since new data are continuously

produced.

For a task i that is executed at server j, and that presumably

uses its entire capacity Cj , it would take Bi/Cj time to

execute, and hence the progress indicator would evolve as

xi(t) = min
{
1,

Cj

Bi
t
}

. The remaining processing requirement

for the task is given by bi(xi) = Bi(1 − xi) while its data

footprint evolution is given by di(xi).

C. Virtualization in cloud servers
A VM provides an isolated environment for the execution

of a single task. Without loss of generality, we assume that

each task consists of a single VM and that each user generates

a single task. Hence, we may use the same index i to refer to

a user, his task and the corresponding VM. Upon migration

of a task, a new VM is created for this task on the destination

server and the execution starts, while the VM at the server

where the task executed initially is ceased and removed.
Although there does not exist a constraint on the maximum

number of VMs that can be co-located on the same server,

this coexistence intuitively affects the execution performance
experienced by each VM. This is because of two factors : (i)
the fact that resources in the physical machine need to be

shared among multiple VMs, (ii) coexistence of VMs leads to

a graceful reduction in effective available processing capacity,

due to overhead induced by the interaction of VMs in an

effort to coordinate resource allocation. This overhead strongly

depends on the number and types of VMs (tasks) that reside on

the same server. For instance, the overhead from 3 coexisting

CPU-intensive VMs is larger than that for 2 CPU-intensive

VMs. Also the overhead for 2 CPU-intensive VMs is different

than the one we would have for 1 CPU-intensive VM and 1
memory-intensive VM.

We model this VM interdependence as follows. Let Aj(t)
denote the set of active tasks of server j at some time t.
For any server j with processing capacity Cj and |Aj | = n,

we assume that an amount of its processing capacity ε(n)
is effectively lost due to the multitenancy effect, i.e. due to

cross-VM management and contention. To model this impact

of multitenancy, ε(n) is taken to be increasing in number of

VMs n. We assume that the remaining capacity is equally

shared among co-located VMs. Hence, each task on server j
obtains an effective share of processing capacity:

cj(n) =
Cj

n
− ε(n) . (1)

Since the effective processing share that each VM enjoys

is unknown, due to unknown parameter ε(n), we propose

a mechanism for estimating this amount of overhead and

feeding it back to the software entity that is responsible

for management of cloud resources and migration decisions,

generally referred to as hypervisor. Fix attention to computing

the overhead ε(n) due to n coexisting VMs on a server.

Let Sn denote the subset of servers that host n VMs. At

each server j ∈ Sn and at each decision epoch, we take

M measurement samples of the effective processing capacity,

{Cjm : m = 1, . . . ,M} that each hosted task enjoys. CPU

consumption measurements are possible by using off-the-

shelf cloud monitoring tools like Ganeti [18]. This leads to

sample values εjm(n) =
Cj

n − Cjm, m = 1, . . . ,M of the

multitenancy overhead at server j.
Subsequently, the collected measurements are passed to the

hypervisor aggregates these values to a sample mean estimate

as follows:

ε̃(n) =
1

M |Sn|
∑

j∈Sn

M∑

m=1

εjm(n) (2)

This quantity serves as an estimate of the overhead for each

server with n tasks, and it will be used in migration decisions.

In particular, all decisions regarding migrations are performed

by the hypervisor based on the estimated share for a server j
with n coexisting tasks, given by c̃j(n) =

Cj

n − ε̃(n).

D. Migration
A task may migrate several times to different servers during

its execution. The need for task migration arises from the

dynamics of the system in terms of new task arrivals, task com-

pletions and varying delays due to varying processing speeds.

A migration should be performed whenever it improves task

lifetime. In order to decide whether a migration is beneficial in

terms of reducing the execution time, we compare two delays:

(a) the anticipated execution time at the current server,

(b) the expected completion time at the new server, including

the time required to transfer the data volume from the

current to the new server.

Assume that task i resides and is executed at server k. Its

residual processing requirement is bi = Bi(1 − xi) and the

amount of accompanying data is di. Let there be nk active

tasks on server k. This means that the effective available

processing capacity for task ck(nk) is given by (1) and the

remaining processing time for tentative case of no migration

(a) is:

Da
i(nk) =

bi
ck(nk)

(3)

Next, we determine whether migrating to server � that hosts

n� tasks will lead to shorter task execution time for task i (case

(b)). In order to resume execution at server �, the entire volume

of accompanying data needs to be moved to the new server

over the overlay link of capacity Wk�, incurring a communi-

cation cost (delay) equal to di

Wk�
. If task i moves there, it will

receive a processing share of c̃�(n� + 1) = C�

n�+1 − ε̃(n� + 1).
Thus, the estimated remaining execution time at � is:

Dk��
i (n�) =

di
Wk�

+
bi

c̃�(n� + 1)
(4)

Notice that throughout the paper, we use the superscript a to

refer to migration case (a), while case (b) is denoted by the

superscript k�� indicating a task migrating from server k to

�. Notice that a migration is beneficial only if the new server

can provide significantly better effective processing speed so

as to accommodate migration delay.

E. Mobility
The mobility pattern of user i can be represented as a

sequence of servers {ji(t)} that denotes her current point of

wireless access for each timeslot t. As the user moves from

one BS to another, a different subset of servers is directly

accessible, namely the ones comprising the local cloud of the

corresponding BS. A task is completed, once its data have

been transferred to the mobile user. If the VM is completed

in a remote server k, the final data have to be transferred to

the user’s current point of access ji. Thus, for mobile users

we need also to include the corresponding delay in migration

decisions. Intuitively, as the task proceeds to its completion,

the migration strategy should favor the local clouds that are

closer to the mobile user.

For the no-migration case (a) the remaining lifetime of task

i hosted at server k becomes:

T a
i (nk) = Da

i(nk) + �{k �=ji}
di(1)

Wkji

, (5)

where Da
i(nk) is given by (3) and di(1) is the volume of the

accompanying data once the execution is completed, i.e. for

xi = 1. Notice that for the calculation of total lifetime in the

cloud, we have assumed that user i will be at her current point

of wireless access, namely ji.

In order to decide whether migration of task i to server

� is beneficial, we derive the following metric capturing the

expected lifetime in case of migration case (b):

T k��
i (n�) = Dk��

i (n�) + �{� �=ji}
di(1)

W�ji

(6)

where Dk��
i is given by (4) while the second term captures

the delay cost of transferring the final results to the current

point of access of user i.

III. ALGORITHMS FOR EFFICIENT TASK MIGRATION IN

THE CLOUD

The execution time of a task in a cloud computing system

depends on a number of dynamic and unpredictable param-

eters, such as task arrivals, user mobility and the effect of

multitenancy which are revealed to the hypervisor in an online

manner. We consider a model where migration decisions are

taken in discrete time intervals. A period of 5 minutes is

typical in commercial virtualization platforms [9]. We propose

three online migration mechanisms. Our schemes make use

of control messages that are circulated within the cloud,

including the number of tasks running on each server and an

estimate of the multitenancy overhead parameter ε̃(n). Using

this information the estimated processing share per task c̃k(nk)
at any server k can be computed.

A. Cloud–wide task migration
Consider the fully coordinated scenario, where the cloud

provider needs to decide which tasks to migrate and where.

Consider a task under tentative migration from its current

server to a new one. Given that co-located tasks compete for

the same resources, the migration affects the performance of

all tasks running at the current and the new server. Thus, a

migration should be considered only if it is beneficial for the
system as a whole.

Under processor sharing, each task receives a portion of

processing capacity inversely proportional to the number of

tasks running on this server. Thus, a migration improves the

performance of co-located tasks in the host server. Fewer tasks

have to share the available physical resources, which also

leads to reduced multitenancy cost. On the other hand, the

addition of a new task at the destination server would lead to

a larger number of tasks sharing a given processing capacity,

while the multitenancy overhead would also increase. Finally,

the residual execution time of the task under migration may

increase or decrease, depending on the load at the host and

the destination server, the capacity of the interconnecting link

and the volume of accompanying data.
At each decision epoch, all active tasks are candidates for

migration to any other server. We focus on task i currently

hosted by server k and consider the impact of its migration to

server �. Initially, the lifetime (execution + migration time) of

the involved tasks is used as the performance metric for the

case of no migration. This is given by:

M a =
∑

l∈Ak

T a
l (nk) +

∑

l∈A�

T a
l (n�). (7)

Both terms come from (5) and capture the total lifetime at

each of the servers k, � if no migration is performed.
Next, the remaining lifetime is estimated for the case of

migration of task i to server �:

Mk��
i =

∑

l∈Ak\{i}
T a
l (nk − 1)+T k��

i (n�)+
∑

l∈A�

T a
l (n� +1). (8)

The first term corresponds to the improved lifetime of tasks

at host server and is given by (5), while the second term

is the expected lifetime of the migrating task described by

(6). The third term captures the degraded performance at the

destination server � and is given by (3). The difference in

performance M a −Mk��
i if positive, indicates the reduction

in total execution time of tasks by virtue of migration of task

i from server k to server �.
Since a migration to any other server is possible, this

calculation has to be carried out for each possible destination

server �. Finally, out of all the possible migrations the one

of maximum reduction is performed. This process is repeated

until no more beneficial migrations can be found. This online

mechanism is executed in every epoch. Within an epoch new

tasks arrive while others complete execution. In general, the

algorithm intuititively reassigns tasks from overloaded servers

to underutilized ones. However, the selection of the task to

migrate is performed by jointly considering the following

guidelines:

• Migrations of tasks with increasing data volume pattern

are given priority, since the migration cost of any such

task increases as its execution proceeds.

• Tasks of significant residual processing burden are pre-

ferred to migrate since the benefit of a migration is

an increasing function of the remaining burden of the

task. A task of substantial remaining processing time can

exploit the available capacity at the destination server

more efficiently, while migrating a task that is close to

completion, may not be beneficial even if the destination

server is idle.

• Tasks that experience significant multitenancy cost are

selected for migrations. Although this cost is generally

increasing in the number of co-located tasks, its exact

impact depends also on the type of co-located tasks.

• prefer servers that are closer to the user, as a task moves

towards completion.

B. Server-centric task migration
Next, we devise a migration mechanism that is of lower

complexity than the first one. Each server periodically checks

whether the execution time of its active tasks can be improved

through a migration to a new server and autonomously selects

which of its active tasks should migrate and where. The

anticipated reduction in execution time for each possible

migration to any new server needs to be estimated, which for

task i migrating from server k to server � is defined as:

La − Lk��
i =

∑

l∈Ak

T a
l (nk)−

∑

l∈Ak\{i}
T a
l (nk − 1)− T k��

i (n�)

In this case, we consider the total reduction in execution

time of the tasks hosted by server k. The first term is the

total execution time for the case of no migration, while the

second term is the total execution time of the nk − 1 tasks

remaining at server k and the third term corresponds to

the expected execution time of migrating task i in the new

server �. Since migrations are initiated by the host server, the

impact of the migration on the tasks located at the destination

server is unknown and hence not considered. The migration of

maximum gain is performed. This is repeated until no more

migrations of positive expected gain can be found.

This algorithm requires no synchronization among servers,

in the sense that each server may autonomously decide when

to check for beneficial migrations. This could be triggered

whenever a server considers itself overloaded, e.g. compared

to the average server load of the cloud.

C. Task-centric migration
In contemporary cloud systems, migration decisions are

made by the cloud provider. However, each task/user may au-

tonomously decide its migration strategy towards minimizing

its own execution time. Next, we consider the scenario of a

user that may offload its task to one out of several possible

cloud providers/servers, but is only aware of the advertised

capacity of each.

Due to multitenancy the effective capacity of each server

k at timeslot t is lower than the advertised one. The actual

capacity is only revealed once a task migrates to a server. Thus,

we propose the following heuristic. From time to time, any

task i may autonomously check whether a tentative migration

from its current server k to a new one, say �, would decrease

its estimated lifetime, i.e. whether T k��
i (n�) < T a

i (nk). Then,

the task migrates to the server that results in the maximum

reduction in task lifetime.

IV. NUMERICAL EVALUATION

In order to compare the performance of the proposed

schemes, we use an event-driven simulator for a cloud system

of 50 servers, each of capacity C ∈ [0.1, 2] Tera–flops,

interconnected through wireline communication links of mean

available link capacity W ∈ [1, 10] Mbps. The link and

processing capacities are assumed to be i.i.d. across time.

New tasks arrive at each server i according to an inho-

mogeneous poisson arrival process of parameter λi(t) ar-

rivals/sec. The processing burden follows a heavy tailed

pareto-like probability density function (pdf) with P [Bi >
x] = min{1, (1/x)1.25}, where x is in teraflops, which is

typical for CPU intensive tasks [19].

We consider tasks of increasing or decreasing data foot-

print evolving according to di(xi) = min{0, αxi + β} with

α ∼ U(−10, 10), β ∼ U(0, 100) for the increasing and

β ∼ U(10, 1000) for the decreasing ones (in MBytes). The

multitenancy cost is modeled as a Gaussian random variable

with mean μ = k−1
2k and variance σ2 = 1

16k2 . Throughout this

section, we will use the no-migration strategy and a one-shot

placement scheme as performance benchmarks. Placement

follows the rationale of our cloud-wide approach, but now the

server that will host the task is selected only once, when the

task arrives at the system. The depicted values are averages

over 100 instances.

Initially, we investigate the population of tasks N hosted

by each server, which indicates the load balancing behaviour

of each algorithm. Since N is a random variable, we depict

in Fig. 2(a) its cumulative distribution function (cdf), i.e. the

probability P [N ≤ k] ∀k ∈ N. The slopes of the curves

indicate how balanced the cloud is. In the cloud-wide approach

a server hosts at most 3 VMs, while the probability of having

more than 3 VMs running on a server is 10% for the server-

level approach and 25% for the task-initiated one. In the latter

case the probability of having more than 20 tenants in a server

is non-negligible (∼ 4%). Nevertheless, compared to the no-

migration case the load is more balanced. We depict in Fig.

2(b) the exact distribution of tasks on the servers through the

probability mass function (p.m.f.) of N . We see that the cloud-

wide migration strategy lead to a more balanced network,

where in most of the cases the number of tasks N ranges from

1 to 3. Moving from centrally coordinated to server- and task-

centric approaches, we observe that we get higher variance.

For example, in the user–centric scheme the probability that

a server is empty is significant and even for N > 20 the

probability is non-negligible.

Next, we consider how the distribution of tasks is affected

by the link capacity of the cloud interconnection links. Thus,

we depict in Fig. 2(c) the pmf of the cloud wide approach

for three different scenarios, where the cloud servers are

interconnected by high/medium/low capacity links. As the link

capacity decreases the pmf broadens indicating that it is not

always optimal to perform a perfect load balancing. This is

justified by the fact that in low link capacity regime, the

migration cost becomes significant and hence it is preferable

to keep the cloud unbalanced.

In Fig. 3(a) we quantify the impact of processing capacity

on average lifetime of tasks. As expected, the performance

degrades as we move from the centralized approach that has

system–wide information to decentralized ones that rely only

on local information. Increasing server capacity causes the

performance gap of the proposed schemes to diminish, which

indicates that careful migration decisions are most important in

overcommitted clouds. Interestingly, it is only the task-initiated

approach that performs worse than one-shot placement. Our

results reveal that although task-initiated approach does not

perform much better than no-migration in terms of average

lifetime, the migrating tasks benefit significantly.

In Fig. 3(b) we depict the impact of data footprint on

average task lifetime. As the mean footprint, increases the

Fig. 4. The lifetime of a mobile task under different migration strategies

performance gap between the proposed algorithms decreases,

since the more the data that a task carries, the greater the

migration cost is. Finally, we consider the frequency of

migrations for each algorithm in Fig. 3(c) for two different

scenarios. For tasks of medium data footprint we observe that

more migrations are performed, compared to a system serving

data-intensive tasks.

In order to stress the impact of mobility in migration deci-

sions, we depict in Fig. 4 the lifetime of a task that is initially

uploaded to local cloud A by a mobile user. We consider a

task of increasing data footprint that can be executed either at

the directly accessible local cloud A or a distant one, say B.

We depict the scenarios of a) no migration, b) a strategy that

does not consider migration cost and download time and c)

the proposed task-initiated migration strategy that is mobility

aware. For each time instance, we depict in colour the closest

to the user cloud facility in terms of communication delay. In

the no-migration strategy execution takes place in local cloud

A and hence exhibits the worst performance. Initially, the

migration cost is negligible since the data footprint of the task

is small. Thus, as long as the user is in range of local cloud A

and migrations are costless, the other two migration strategies

perform identically. Once the user moves out of range of BS

A to a place that is closer to cloud B, the mobility-aware

approach moves the task there. In contrast, the load-aware

policy constantly migrates the task to the least-loaded server, in

an attempt to exploit the available processing capacity, without

considering though the increasing cost of each subsequent

migration and the additional cost of downloading the final

data from a remote server. Hence, it is outperformed by the

mobility-aware one.

V. CONCLUSION

We considered the problem of minimizing execution time

of tasks in the cloud. We developed migration policies that

opportunistically exploit available processing capacity at cloud

servers. Our techniques explicitly take into account into ac-

count the interaction of co-located tasks in a server and the cost

of migrations. In contrast to the migration policies currently

applied in commercial virtualization platforms like vSphere

[9], we demonstrate that migrations should be performed based

on the criterion of estimated execution time and not based

4 9 14 19 24 29 34 39
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Tasks k (per server)

P
ro

b
a
b
ili

ty
 N

<
k

no migration
Task−centric migration
Server−centric migration
Cloud–wide migration

(a) cdf of the number of tasks per server

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of Tasks k (per server)

P
ro

ba
bi

lit
y

N
=k

no migration
Task−centric migration
Server−centric migration
Cloud–wide migration

(b) pmf of the number of tasks per server

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

Number of Tasks k (per server)

P
ro

ba
bi

lit
y

N
=k

no migration
Cloud–wide migration (W~0.1Mbps)
Cloud–wide migration (W~1Mbps)
Cloud–wide migration (W~10Mbps)

(c) pmf for different link rates

Fig. 2. Load balancing behaviour of the proposed algorithms

D
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 1012

5

10

15

20

Processing Capacity per Server (in bits/sec)

A
ve

ra
ge

 L
ife

tim
e

(in
 m

in
ut

es
) no migration

Task−centric migration
Server−centric migration
One−shot placement (cloud–wide)
Cloud–wide migration

(a) Available processing capacity

107 108 109

2

4

6

8

10

12

Data Footprint (in bits)

A
ve

ra
ge

 L
ife

tim
e

(in
 m

in
ut

es
)

no migration
Task−centric migration
Server−centric migration
One−shot placement (cloud−wide)
Cloud–wide migration

(b) Data footprint

107 108

20

40

60

80

100

120

140

160

180

200

Link Capacity W (in bits/sec)
T

ot
al

 N
um

be
r

of
 M

ig
ra

tio
ns

Server−centric (data volume d~10MB)
Cloud–wide (data volume d~10MB)
Server−centric (d~1GB)
Cloud–wide (d~1GB)

(c) Available link capacity

Fig. 3. The impact of system/task parameters on cloud performance

on the requested resources of each task/VM. In this work,

we followed an algorithmic approach to the problem of task

migration. We are currently in the process of implementing

these techniques in a real cloud cluster of tens of nodes and

we expect to report findings in future work.

VI. ACKNOWLEDGEMENTS

This work was supported by ERC08-RECITAL project,

co-financed by Greece and the European Union (European

Social Fund) through the Operational Program ”Education and

Lifelong Learning” - NSRF 2007-2013.

REFERENCES

[1] “Rethink it: Getting rid of noisy neighbours,” http://blogs.vmware.com/
rethinkit/2010/09/getting-rid-of-noisy-cloud-neighbors.html.

[2] “Has amazon ec2 become over subscribed?” http://alan.blog-city.com/
has amazon ec2 become over subscribed.htm.

[3] “Mixpanel: Why we moved off the cloud,” http://code.mixpanel.com/
2011/10/27/why-we-moved-off-the-cloud/.

[4] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “Performance analysis of cloud computing services for many-
tasks scientific computing,” IEEE Trans. Parallel Distrib. Syst., vol. 22,
no. 6, Jun. 2011.

[5] S.-H. Lim, J.-S. Huh, Y. Kim, G. M. Shipman, and C. R. Das, “D-factor:
a quantitative model of application slow-down in multi-resource shared
systems,” in ACM SIGMETRICS/PERFORMANCE 2012.

[6] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu, “Understanding
Performance Interference of I/O Workload in Virtualized Cloud Envi-
ronments,” in IEEE CLOUD 2010, July 2010, pp. 51 –58.

[7] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, “An
analysis of performance interference effects in virtual environments,” in
IEEE ISPASS 2007, April 2007, pp. 200 –209.

[8] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards
characterizing cloud backend workloads: insights from google compute
clusters,” ACM SIGMETRICS, vol. 37, pp. 34–41, March 2010.

[9] “vSphere Resource Management Guide,” http://www.vmware.com/
support/pubs/vsphere-esxi-vcenter-server-pubs.html.

[10] K. Srinivasan, S. Yuuw, and T. J. Adelmeyer, “Dynamic VM migration:
assessing its risks and rewards using a benchmark,” in ICPE ’11.

[11] S. Maguluri, R. Srikant, and L. Ying, “Stochastic models of load
balancing and scheduling in cloud computing clusters,” in Proceedings
IEEE INFOCOM 2012, March 2012, pp. 702 –710.

[12] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box and
gray-box strategies for virtual machine migration,” in NSDI’07.

[13] K. Li, H. Zheng, and J. Wu, “Migration-based virtual machine placement
in cloud systems,” in IEEE CloudNet, 2013, pp. 83–90.

[14] A. Roytman, A. Kansal, S. Govindan, J. Liu, and S. Nath, “PACMan:
Performance Aware Virtual Machine Consolidation,” in IEEE ICAC 13,
2013.

[15] S. Gitzenis and N. Bambos, “Joint task migration and power manage-
ment in wireless computing,” IEEE Trans. on Mob. Comp., vol. 8, no. 9,
pp. 1189 –1204, Sept. 2009.

[16] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in EuroSys ’11.

[17] L. Gkatzikis and I. Koutsopoulos, “Migrate or not? exploiting dynamic
task migration in mobile cloud computing systems,” IEEE Wireless
Communications, vol. 20, no. 3, 2013.

[18] “Ganeti : Cluster-based virtualization management software,” http://
code.google.com/p/ganeti/.

[19] M. Harchol-Balter and A. B. Downey, “Exploiting process lifetime
distributions for dynamic load balancing,” ACM Trans. on Comp. Syst.
1997.

