
Client-Server Games and their Equilibria
in Peer-to-Peer Networks I

Iordanis Koutsopoulosa,c, Leandros Tassiulasa,b, Lazaros Gkatzikisb,∗

aCentre for Research and Technology Hellas, CERTH-ITI.
bDepartment of Computer & Communication Engineering, University of Thessaly, Greece.
cDepartment of Computer Science, Athens University of Economics and Business, Greece.

Abstract

In peer-to-peer networks, each peer acts simultaneously as client and server, by
issuing and satisfying content requests respectively. In this work, we use con-
cepts from non-cooperative game theory to model the interaction of autonomous
peers. The client strategy set consists of feasible request load splits towards
servers, while the server strategy set is formed out of possible service disciplines
on received requests. The performance metric of interest is the average retrieval
delay of content requests.

First, we assume preassigned fixed server policies (FIFO and priority) and
study the emerging client request load splitting game. Peers are either egotistic
that are interested only in optimizing their own delay, or altruistic ones that
also take into account delay incurred to other peers. We consider best response
updates to model iterative peer interaction. For egotistic peers, we show that
the sequence of best responses always converges to the unique Nash Equilibrium
Point (NEP). For altruistic peers, the best response updates converge to one of
the multiple NEPs, with each one being a global optimum for the FIFO case
and a local optimum for any other service strategy profile. We also consider
mixed swarms consisting of both egotistic and (partially) altruistic peers and
show an interesting transition from one to multiple NEPs. Next, we include
service strategies in the peer strategy set. Though with its service policy a peer
cannot directly affect its delay, it can affect the resulting NEP. We devise two-
level game models, where, at a first level, a peer selects its favorable service rule
and then peers play a client load splitting game.

Keywords: peer-to-peer, selfishness, two-level games.

IPart of the material in this paper has appeared in a conference version, in [25].
III. Koutsopoulos acknowledges the support of ERC08-RECITAL project, co-financed by

Greece and the European Union (European Social Fund) through the Operational Program
Education and Lifelong Learning-NCRF 2007-2013.

∗Corresponding author
Email addresses: jordan@inf.uth.gr (Iordanis Koutsopoulos), leandros@inf.uth.gr

(Leandros Tassiulas), lagatzik@inf.uth.gr (Lazaros Gkatzikis)

Preprint submitted to Elsevier March 15, 2014

1. Introduction

Peer-to-peer networks gained momentum in the last years for file sharing
(BitTorrent), streaming media (SopCast), VoIP (Skype), decentralized con-
tent caching (Corelli), and recently for distributed social networking (safebook).
These networks often operate autonomously without external coordination, and
the network operational regime is the outcome of spontaneous peer interaction.
Understanding the nature of these interactions and predicting the operational
regimes of the network as a whole are two primary objectives in distributed
networked environments.

In this work, we study a peer-to-peer network for content sharing. Each peer
operates simultaneously as server and client, by issuing and satisfying content
requests respectively. As client, it generates requests for content. Each request is
followed by an advertisement about peers with that content in their possession.
In BitTorrent, this is accomplished by the tracker that returns a random set
of peers that have (part of) the object. For each request, the client peer then
decides on the peers from which it will request the content. In advanced systems,
a client may even download different parts of an object from different peers. If
time is expanded, the sum of the portions of the various requests of a peer that
are addressed towards each server forms the portion of the peer request load
that is routed towards each server. On the other hand, a peer acts as server and
serves received requests from other peers by sending them the requested content
based on a service (scheduling) discipline. At the same time, a peer has its own
requests served by other peers. In content sharing, a meaningful performance
metric is the average retrieval delay of requests, namely the average time elapsed
from the issue of a download request until the download has been completed.

In structured coordinated systems, a social objective that reflects global
system operation is defined, such as minimization of total average delay, and
optimization-driven algorithms delineate the means to achieve this objective
through global coordination. However, peer-to-peer networks may have no cen-
tral operator and usually do not adhere to global coordination towards a global
social objective. Instead, peers interact autonomously and spontaneously with
each other. Thus, they selfishly decide on their controls (strategies) so as to
pursue their individual performance objective—in our case, minimize their av-
erage retrieval delay. Each peer has a client strategy set consisting of feasible
request load splits towards servers, and a server strategy set which is formed out
of possible service disciplines on received requests. By a certain client strategy,
a peer affects the total loads at different servers, and hence the delays of peers
that seek service at these servers. Also, by a certain server strategy a peer affects
delays of peers that seek service from it. Peers compete for server capacity re-
sources and selfishly readjust their strategies to improve their own delay. In such
non-cooperative peer interactions, it makes sense to study the resulting stable
operating points, namely peer strategies from which unilateral peer deviation
does not improve performance. These operating points are the Nash equilib-
rium points (NEPs) of a non-cooperative game. The social objective serves as
a benchmark, quantifying the performance loss of selfish interaction compared

2

to the social optimum. In this work, we consider not only best response request
load splitting but also service strategies, we investigate their impact on average
retrieval delay and characterize the resulting equilibrium points.

1.1. Our contribution

Our framework comprises small to moderate-sized swarm networks consist-
ing of nodes that engage in file sharing transactions. In that sense, the impact
of a peer strategy on others is non-negligible. The starting point of our models
is the atomic splittable framework for selfish routing over parallel links, where
a link stands for a server. Each peer has a client strategy set of feasible re-
quest load splits towards servers, and a server strategy set of possible service
disciplines on received requests. We consider the performance metric of average
retrieval delay.

First, we assume fixed server strategies (First-In-First-Out, or absolute pri-
ority) and study the client request load splitting game. Each peer splits its
request load to servers so as to minimize its own average delay. Best response
updates are used to model iterative peer interaction. We consider peer profiles
ranging from selfish or egotistic, where peers optimize only their own delay, up
to benign or altruistic, where peers also take into account incurred delays to oth-
ers. We derive conditions and properties for NEPs and discuss convergence of
the best response to the NEP. For egotistic peers, the NEP is unique regardless
of the server strategy, and the sequence of best responses can be implemented
based on localized delay measurements. For the altruistic case under FIFO
service, there exist multiple NEPs, and the sequence of best response updates
converges to a NEP which is also a global optimum. For priority scheduling
policies we also observe convergence of best response to one of the NEPs, which
however are local minima. We show numerically that the price of anarchy is
rather small. For the cases where both egotistic and β-altruistic nodes coexist
we characterize the transition from one to multiple NEPs.

Next, we include server strategies in the strategy set. With its service policy,
a peer cannot directly affect its own delay, but it can affect its delay at the NEP
after peers play a client load splitting game. The idea is that a peer i should
offer high priority to (and thus attract traffic from) those peers that are served
with higher priority than i at other servers, and which cause large delays to i.
If peer i knows that j is served with higher priority than i at a server k, it may
decide to serve j with high priority. By advertising lower delays to j, peer i may
attract some traffic of j that was going toward server k and thus improve its own
delay at k. We devise two-level game models, where at first level, a peer selects
a service rule in terms of a convex combination of absolute service priorities,
and subsequently peers play a client load splitting game. A sophisticated best
response for a peer is to select a service strategy such that its delay at NEP after
peers play the client load splitting game is minimized. This is the best choice
available to i at that moment. We also suggest various suboptimal heuristics
for selecting a service discipline which require less information to accomplish.

The main contributions of our work can be summarized as follows:

3

• We formulate the double role of peers as clients (i.e. choosing the server
to download from), and servers (i.e. selecting the service strategy) and
investigate the impact of both roles on performance.

• We propose a game-theoretic model of peer interaction that captures a
range of peer behaviors, ranging from egotistic to altruistic, and we demon-
strate how peer behavior affects file retrieval delay.

• We characterize the resulting equilibrium points and quantify the perfor-
mance loss arising due to selfishness of peers.

The paper is organized as follows. Section 2 provides an overview of related
work. In section 3, we present our peer-to-peer model and the assumptions
made. Section 4 is devoted to client load splitting games for given service
disciplines, and in section 5 we study client-server games, where the service
policy is also part of a peer strategy. Section 6 includes extensive numerical
evaluation of the proposed schemes and section 7 concludes our study. The
proofs of our theorems are provided in the appendix.

2. Related work

Modeling and performance evaluation of peer-to-peer networks can be per-
formed through queueing theory tools under the premise that the server capacity
is infinitely divisible. Initial related results on abstract scheduling problems date
back to more a decade ago. Indicatively, work [1] considers minimizing the to-
tal weighted delay for a system of customers and queues under non-preemptive
priority scheduling. The problem consists in i)finding an allocation of customer
traffic portions to queues and ii) a customer sequencing order at each queue.
For the latter problem, a static priority discipline, in line with the cµ rule, is
optimal. The authors proceed to convex relaxations to solve this non-convex
problem, and hence the optimal solution cannot be guaranteed. The case of
FIFO scheduling is studied in [2], where the major finding is that, at the opti-
mal solution, the customer types allocated to each server have to be clustered in
terms of first and second moment of service times. However, these works do not
capture the specifics of peer-to-peer networking, namely the double client-server
role of peers and their tendency to selfishness.

In the context of peer-to-peer file sharing, fluid models and queueing the-
ory have been extensively used. Work [3] models the collective behavior of
peers as a closed queueing network with one queue per object, a queue service
rate depending on the number of object replicas, and one queue representing
query processing. In [4], the authors study peer selection for downloading and
streaming content to minimize required time and monetary cost for download-
ing, assuming that bandwidth prices are announced. In a similar setting, [5]
brings the Internet Service Provider (ISP) dimension into picture and addresses
the balance between minimizing the download delay in peer-to-peer commu-
nication and minimizing the tariffs paid among different ISPs that carry P2P
traffic among themselves. The problem concerns coordinating the trackers in

4

the transient swarms to control the in- and out-flow of P2P traffic from each
swarm.

Given that each peer is an autonomous and self-interested entity, game the-
ory appears as a promising tool for modeling behavior and interaction of peers.
In this direction, [6] presents a fluid model for BitTorrent which analyzes av-
erage file transfer time and discusses upload bandwidth control strategies that
lead to Nash equilibria, where the utility is the average download rate. Recent
work [7] investigates the scenario where peers selfishly select to which other
peers they connect. Compared to our approach, the considered strategy space
is significantly smaller, since the exact allocation of requests to the connected
peers is not captured. Besides, all these works ([3] - [7]) assume fixed service
strategy.

To the best of our knowledge, only limited works have considered the server
role of peers. In [8] the authors study unilateral or bilateral network forma-
tion games, where peers individually open up connections on multiple paths or
mutually agree on setting up paths respectively. [9] addresses the problem of
optimal multimedia P2P content exchange among a set of peers. The emphasis
here is on a resource reciprocation game. In that game, the strategy of each
peer amounts to appropriate placement of transmission effort (and resources)
towards other peers in a group, according to the quality of multimedia content
received from those other peers.

In this work, we propose a novel two-level repeated game framework that
jointly captures i) request load splitting and ii) service strategy, since both af-
fect the resulting equilibria. The problem of request load splitting to a set of
server peers, faced by a set of client peers that we consider, parallels that of
selfish routing of several input flows over shared paths, where each path link
is associated with a latency function. In a non-atomic setting, each input flow
represents a large population of individuals, each of which controls a negligible
amount of flow and myopically follows the path of minimum cost. Macroscop-
ically, the total input flow can be split over multiple paths, but the input flow
cannot control the route of its constituent infinitesimal individuals. On the
other hand, in an atomic setting, each flow is a player which routes its traffic
load through only one path. For generic link cost functions, existence of a NEP
is guaranteed for the non-atomic case but not for the atomic one unless all input
flows are equal to each other (see [10, Chap.18] for a comprehensive survey on
routing games and other results on generic and linear cost functions).

Further, in atomic splittable models, each flow is a player which may split
its traffic across multiple paths under the criterion of optimizing its own cost.
In the seminal work [11], the authors establish uniqueness of NEP for atomic
splittable models and for a class of link cost functions with some convexity
properties, among which is the average latency per unit flow for an M/M/1
queue with FIFO service. However, convergence of best response updates to
the NEP is formally proved only for the case of two users and two links.

The worst-case ratio between the social objective evaluated at a NEP over
that evaluated at the social optimum is called price of anarchy [12]. This is
studied in [13] and [14] for routing games with non-atomic players. The price

5

of anarchy is at most 4/3 for linear latency functions regardless of the network
topology. Bounds are also derived for latency functions that correspond to
M/M/1 and M/G/1 queue service (which may even grow unbounded), under
some assumptions on link load that prevent latency functions from being infinite.
More recently, the work [15] shows that the price of anarchy for a non-atomic
game with N parallel links, a single input flow, and the class of unbounded
latency functions above is N . For the atomic splittable flow case, a bound
of 2.618 exists on price of anarchy [16] with linear cost functions but no such
bound exists for other types of cost functions. The work [17] provides upper
bounds on price of anarchy for non-atomic users whose behavioral profile ranges
from selfish to altruistic, depending on whether or not the social welfare appears
in their objective, whereas a recent technical report [18] provides a numerical
evaluation of various regimes of peer cooperation and non-cooperation.

An important line of works study how to engineer efficient NEPs, a topic
that is beyond the scope of this work. The works [20], [21] respectively con-
sider allocating additional capacity to links and controlling some amount of flow
through a central manager in the model of [11]. [22] approaches the problem of
peer-to-peer content distribution and peer-to-peer services through cooperative
game theory. Specifically, appropriate incentive mechanisms are designed that
ensure that users contribute resources. The key challenge addressed is that the
revenues for the provider (due to operational cost reduction for the system) are
shared between the provider and the users according to the extent that each
user’s participation contributes to the cost reduction. A comparative study of
different incentive schemes in P2P networks, like cooperation, payments, re-
peated peer interaction, intervention, and enforced full sharing can be found in
[23].

Nomenclature

N the set of peers in a swarm

ri mean request load of client i (bits/sec)

Li mean size of requests by client i (bits/req)

Cj upload capacity of server peer j (bits/sec)

µij average service rate of client peer i at server peer j (reqs/sec)

λij content request load of peer i addressed to server j

ρij = λij/Cj traffic intensity in server j due to the load of peer i

Λj =
∑N

i=1 λij total content request load addressed towards server j

λi = [λi1 . . . λiN] request splitting strategy of client peer i

λ−i load splitting strategy profile of peers other than i

6

Λ = [λ1 . . .λN]
T

request splitting strategy of the network

Λ∗ request load splitting at the NEP

Λ0 request load splitting at network optimum

π = (π1 . . .πN) service disciplines of the servers

Dij average retrieval delay per unit traffic of peer i at server j

D = (D1 . . . DN) vector of average retrieval delays

Dtot total average network delay

3. System model

We consider a setN ofN peers that form a small to medium sized swarm and
engage in long-term content exchange transactions. Peers are non-cooperative.
No subset of them coordinate or negotiate, and they do not conform to any
incentive protocol. Each peer has some content in its disposal, which it may
provide to others upon request. At the same time, each peer places content
requests for obtaining content objects from other peers. The performance metric
for each peer is the average content retrieval delay from other peers, a metric
that has been extensively used in the literature for peer-to-peer file sharing
applications(e.g. [5, 6, 8, 25])

Content retrieval delay between a content requester (client) peer and a
provider (server) peer is the sum of network congestion delay, queueing delay
and service delay. The first one is due to congestion conditions at the physical
path that connect peers. The second one is due to queueing of various requests
at server peers, and the third one is due to the server finite service capacity.
In this work, we assume that the bandwidth available at backbone links that
connect peers is large enough so that the effect of congestion on retrieval delay
is negligible. We take into account the queueing and service delays which arise
due to limited access link and upload bandwidth of peers. This is very common
in contemporary networks, where upload capacity is much smaller than down-
load capacity (e.g., up to 10 times smaller in ADSL). Though we assume that
set N is fixed, the results extend to dynamic peer arrivals and departures.

3.1. Peers as Clients: Content request load splitting strategies

Each peer i as client is interested in content objects that reside in other
peers. Each requested content object m by a peer i may reside in a subset of
peers Am ⊆ N\{i}. In the long run, as the number of requested content objects
grows, these become indistinguishable. The stream of content requests can be
treated as a divisible fluid, and it can be assumed that content requests for peer
i are addressed towards the entire peer set N\{i}. Such fluid models have been
extensively used to model content exchange in peer-to-peer networks e.g [36].

Under the premise above, each peer i has a content request generation rate
from higher layer applications. For modeling and analytical tractability, we

7

Figure 1: A peer-to-peer system, with each peer i being simultaneously client and server. As
client, peer i splits its content request load of rate ri among peers j = 1, . . . , N, j ̸= i. As
server, peer i uses service capacity Ci to serve incoming request load with a certain service
policy.

assume that the request load generation process at peer i follows Poisson distri-
bution with mean ri bits/sec. The size of a request of peer i is an exponential
random variable with mean Li bits, and thus the request load of ri bits/sec
corresponds to a request rate equal to ri/Li requests/sec. Each peer j has fixed
service rate (upload capacity) Cj bits/sec. The average service time per request
of client peer i at server peer j is 1/µij = Li/Cj seconds per request. Here, we
assume Li = 1 for all i, but our formulation can be modified to include different
average request sizes.

A content request load splitting strategy for client peer i is a vector λi =
(λij : j ∈ N \{i}), where λij ≥ 0 is the amount of content request load of
peer i that is addressed towards server j, and λii = 0, for i = 1, . . . , N . The
fraction of request load of peer i addressed towards peer j is λij/ri. The load

splitting strategy is feasible if
∑N

j=1 λij = ri. Denote by Fi the set of feasible
load splitting strategies of peer i. The fluid model above is general enough and
captures also the scenario where a peer obtains different portions of a distinct
content object in parallel from different peers. A feasible request load splitting
strategy for the network is a matrix Λ with the ith row being λi. Let F be the
set of feasible network load splitting strategies, each of which needs to satisfy
the necessary and sufficient condition for server stability,

∑N
i=1 λij < Cj for

j = 1, . . . , N .
Furthermore, we assume that network stability conditions,

∑N
i=1 ri <

∑N
j=1 Cj

and ri <
∑

N\{i} Cj for i = 1, . . . , N hold. Let λ−i = (λ1, . . . ,λi−1,λi+1, . . . ,λN)
be a collective load splitting strategy profile of peers other than i. Figure 1 de-
picts the content request load splitting of clients to servers.

8

3.2. Peers as Servers: Service Strategies

For a given request load splitting strategy, let Λj =
∑N

i=1 λij be the total
content request load addressed towards server j, and let Λ−i

j be the request load

at server j from peers other than i, so that Λj = Λ−i
j + λij . For exponentially

distributed request size, the service times are also exponentially distributed.
Thus, each server j can be modeled as an M/M/1 queue with service rate Cj

(indicating upload capacity of peer j) that serves incoming requests load Λj .
The traffic intensity in server j due to the load of peer i is ρij = λij/Cj , and

the total traffic intensity at server j is ρj =
∑N

i=1,i̸=j ρij . The average retrieval
delay per unit traffic (bit) of peer i when serviced by peer j, Dij , is the average
queueing delay per unit traffic at j, Qij , plus the average service delay, 1/Cj .

For each server j, the work conservation law says that, given load splits
{λij}i=1,...,N to j, the total average amount of work, namely the total average
queue length of requests is the same regardless of the service discipline. Thus,
if we try to reduce the request queueing delay for a client, the queueing delay of
another client will increase. Work conservation holds for theM/M/1 queue with
preemptive priority service. Work conservation also holds for average retrieval
delays. That is, for each server j:

N∑
i=1,i̸=j

ρijDij =
Λj

Cj(Cj − Λj)
. (1)

However, the service policy of server peer j affects the individual waiting time
of peer i, Qij . The following service policies are considered:

3.2.1. FIFO Scheduling

For FIFO scheduling policy at server j, the same average retrieval delay is
provided to all served clients i, i.e.

Qij =
Λj

Cj(Cj − Λj)
, Dij =

1

Cj − Λj
. (2)

3.2.2. Preemptive Priority Scheduling

A server that employs a preemptive-resume priority service discipline with
given absolute priorities serves incoming requests based on a certain priority
ranking. The service of peer request load is interrupted whenever request load
from a peer of higher priority arrives, and it is resumed from the point it was
interrupted when all higher priority request loads have been served [26]. Besides
being a reasonable service model, this policy can be a good approximation for
non-preemptive priority scheduling policies in high load conditions with regard
to achievable delays.

An absolute priority service policy πj at server j is a ranking of client set
N \ {j}. Let Mj be the set of (N − 1)! possible rankings of client peers. For
a given ranking applied by server j, let πi

j denote the order of peer i in the
ranking. A peer i is served with higher priority than peer ℓ at server j if

9

πi
j < πℓ

j . For a client i, a server j and some priority service policy, let Λi+
j be

the total load that is served by server j with higher priority than the load of i,
namely Λi+

j =
∑

k:πk
j <πi

j
λkj . Let π−j be the service disciplines of peers other

than j and π = (πj ,π−j) denote the ensemble of service disciplines of all peers.
Each priority ranking corresponds to a delay vector (D1j , . . . , DNj), where Dij

is the average delay per unit traffic that peer i experiences in server j. This
depends on the priority πi

j that peer i enjoys in server j and it is [27]

Dij =

1

Cj − λij
, if πj

i = 1,

Cj

(Cj − Λi+
j)(Cj − Λi+

j − λij)
, if πj

i > 1.
(3)

Note that Dij always depends on λij and on loads of peers that are served at
server j with higher priority than i, but not on loads of lower priority peers.
Also, note that the expression for Dij for πj

i = 1 emerges from that for πj
i > 1

for Λi+
j = 0.

The set of possible service policies at server j is the set of all possible mixtures
of different absolute priorities πj ,

Πi = {ami ≥ 0,m ∈ Mi :
∑

m∈Mi

ami = 1} . (4)

The mixture denotes the portions of time where different absolute priority
policies are applied. Clearly the entire set of service policies at server j results in
achievable delays that form Cj , the convex hull of the set of client delay vectors
Dm, each of which corresponds to a specific absolute priority order m ∈ Mj

of clients. Let C∗
j be the set of achievable delay vectors by server j for all

work-conserving scheduling policies. Then, it can be shown that C∗
j = Cj [28].

That is, for any delay vector D corresponding to a work-conserving policy, there

exist positive reals {amj }, m = 1, . . . , |Mj | such that D =
∑|Mj |

m=1 a
m
j Dm, with∑|Mj |

m=1 a
m
j = 1. Namely, any delay vector is achievable through an appropriate

convex combination (mixture) of delay vectors {Dm}, each of which corresponds
to an absolute priority order m.

3.3. Retrieval Delay Metrics

The proposed framework is generic enough and hence enables modelling and
analysis of peer-to-peer systems at different levels of abstraction. Initially, we
devise a fluid approach where average retrieval delay serves as the performance
metric. Next, we demonstrate that a more detailed file-level view is also feasible.

3.3.1. Average content retrieval delay

A macroscopic view of peer-to-peer systems enables us to characterize the
long term behavior of the system. In this context, content exchange can be
viewed as the service of the peer-generated streams of requests. Then, traffic
splitting λij corresponds to the portion of file requests generated by peer i that

10

are directed to peer j and we may denote by Dij(Λ,πj) the average retrieval
delay per unit traffic experienced by client i at server j. This depends on
the load at server j (which in turn depends also on the loads routed by other
peers towards j) and on the service discipline πj of server j. In this case, the
performance metric that constitutes the objective of client peer i is the total
average retrieval delay, which depends on the network request load splitting
strategy and service disciplines π = (π1, . . . ,πN) at servers j,

Di(Λ,π) =
N∑
j ̸=i

λij

ri
Dij(Λ,πj) (5)

The collective network performance is the vector of average retrieval delays
D = (D1, . . . , DN). The system-wide social performance metric is the total
average network delay,

Dtot =
1∑
i ri

N∑
i=1

riDi =
1∑
i ri

N∑
i=1

N∑
j ̸=i

λijDij . (6)

3.3.2. Download time

On the other hand, analysis of content exchange at file-level calls for a differ-
ent approach. In contemporary peer-to-peer file sharing systems like BitTorrent,
each file is separated into several chunks and each is requested from a different
peer. In this case, ri refers to the stream of chunks that peer i has to request
from other peers so as to download the file under consideration and load split-
ting λij corresponds to the portion of the specific file that is acquired from
peer j. Given that downloads from different peers take place in parallel, the
performance metric that constitutes the objective of client peer i becomes:

Di(Λ,π) = max
j∈N\{i}

λijDij(Λ,πj) (7)

In the following sections, we focus on the average content retrieval delay metric.
However, most of derived results also hold for the file-level approach.

4. Client (Request Load Splitting) Games

First, we fix the ensemble of service policies of servers, π = (π1, . . . ,πN)
and consider the problem of request load splitting of each client. In particular,
we study the following cases:

1. All servers employ FIFO service,

2. Each server j employs a given, arbitrary absolute priority scheduling πj .

Hence, the strategy set of each peer i consists only of set Fi. We consider
best response peer strategy updates which arise naturally in autonomous, spon-
taneously interacting non-cooperative peers. Each peer i computes the request

11

load splitting strategy λi ∈ Fi that minimizes a performance objective func-
tion, call it Ui(Λ). In doing so, it affects loads at different servers, and hence
it affects the performance objective functions of other peers as well. These in
turn need to readjust their strategies to obtain the best instantaneously achiev-
able outcome for them, and so on. In order to capture a range of possible peer
behaviors, we introduce the class of selfish load splitting policies, characterized
by the following performance objective functions, parameterized by βi ∈ R,

Uβi

i (Λ,π) =
ri∑
k rk

Di(Λ,π) + βi

∑
j ̸=i

rj∑
k rk

Dj(Λ,π). (8)

For βi = 0, client peer i is selfish or egotistic since it attempts to find a
strategy λi that minimizes its own average delay Di (i.e. first term) and is
indifferent to delays caused to others (i.e. second term). The corresponding
best response strategy updates are called egotistic. For βi = 1, the peer is
benign or altruistic; when it computes its optimal strategy, it also takes into
account the impact of the strategy on delays Dj , j ̸= i of other peers besides its
own, Di. In this case, the performance objective of each peer i coincides with
the system objective, i.e. U1

i (·) = Dtot(·). For 0 < βi < 1, client i’s behavior is
between the two extremes above. Parameter βi is private for each peer.

For a given ensemble of service policies π and profile vector β, a network
load splitting strategy Λ∗ = (λ∗

1, . . . ,λ
∗
N) is a Nash Equilibrium Point (NEP)

for π, if no peer can benefit by unilaterally deviating from the NEP, i.e if for
all i ∈ N ,

Uβi

i (λ∗
i ,λ

∗
−i,π) ≤ Uβi

i (λi,λ
∗
−i,π) (9)

for all λi ̸= λ∗
i . We denote this NEP by Λ∗(β). Different values of β =

(β1, . . . , βN) yield different peer interactions and different NEPs. For instance,
Λ∗(0) (henceforth denoted as Λ∗) is the NEP for egotistic peers, in which case
Di(λ

∗
i ,λ

∗
−i,π) ≤ Di(λi,λ

∗
−i,π) for all λi ̸= λ∗

i and i ∈ N .

4.1. Egotistic Best Response Strategies

For β = 0, each peer i faces the best response problem:

min
λi∈Fi

Di(λi,λ−i,π) . (10)

Given the strategies λ−i of peers other than i, and for any given ensemble
of service policies π (e.g., FIFO or priority), it can be verified from (3) and
(5) that the average delay Di(·) of peer i is a convex function of its strategy
λi. This establishes existence of a NEP in the load splitting game [29]. The
Kuhn-Tucker optimality conditions imply that λi is the best response of i to
λ−i if and only if there exist Lagrange multipliers νi and µi = (µij : j ∈ N\{i})
such that:

∂Di(Λ,π)

∂λij
− νi − µij = 0, j ̸= i, (11)∑

j ̸=i

λij = ri, and µijλij = 0, j ̸= i (12)

12

with µij ≥ 0, λij ≥ 0 and νi the Lagrange multiplier that corresponds to
constraint

∑
j ̸=i λij = ri. A splitting strategy Λ∗ = (λ∗

1, . . . ,λ
∗
N) is a NEP if

and only if conditions (11)-(12) are satisfied for all i = 1, . . . , N . Clearly, service
policies π play a decisive role in the NEP. In general, for each service policy π,
a different NEP emerges for the client game.

A desirable attribute of the game is convergence of iterative best response
strategy updates to a NEP. Best response is the best myopic strategy of a peer
for optimizing delay, without taking into account potential updates of others’
strategies in future moves, and it is a natural means for modeling spontaneous
interaction. NEPs are therefore predictions of collective stable behavior of ratio-
nal peers. Thus, it is desirable to establish that iterative best response updates
converge to a NEP; this would then be the natural system operating point.

4.1.1. FIFO Service

Conditions (11), (12) reduce to:

Cj − Λ−i
j

ri(Cj − Λj)
2 = νi, if λij > 0, (13)

and 1/[ri(Cj − Λj)] ≥ νi if λij = 0. Uniqueness of NEP for selfish routing to
parallel links with a link cost function corresponding to a FIFO queue service
was shown in [11]. Convergence of the sequence of best responses to NEP is
shown numerically but not formally, except for the two-user two-link case. Our
client load splitting game, although conceptually similar to selfish routing over
parallel links, differs in the following. In [11], all links are available to all users,
while in our game the subset of links (servers) to which a user (client) can send
flow is N \ {i}. In general, uniqueness of NEP for the case of restricted subsets
of links to which each user can split its flow cannot be guaranteed [19]. However,
for our game, it turns out we can slightly modify the proof in [11] and can show
that the NEP is unique.

For each client peer i and server j, define Cij = Cj − Λ−i
j as the capacity

of server j minus the total load of peers other than i destined towards j. Note
that Cij depends only on λ−i. Given λ−i, assume that i ranks servers j as
Ci1 ≥ Ci2 ≥ . . . ≥ CiN . From KKT conditions for λij , peer i finds its best
response to the strategy λ−i of other peers as the waterfilling solution:

λij = Cij −
√
Cij∑Ki

j ̸=i

√
Cij

(

Ki∑
j ̸=i

Cij − ri), if j ≤ Ki (14)

and λij = 0 otherwise, where

Ki = max{ℓ :
√
Ciℓ ≥

(
∑ℓ

j ̸=i Cij − ri)∑ℓ
j ̸=i

√
Cij

}. (15)

The machinery of best response goes as follows. Strategy update by each
peer takes place once in a given time interval. The interval can be taken to be

13

large enough so that the condition above is satisfied. Synchronism in updates
of peers is not required. At interval n, a peer i measures average delay per unit

flow, D
(n)
ij that it experiences at each server peer j. This can be measured easily

through certain fields in request and received data packets that contain time
instants when the request load packets were released and when content packets
were received, as well as the identities of servers. Peer i also knows its strategy

λ
(n)
i = (λ

(n)
i1 , . . . , λ

(n)
iN) and it can deduce C

(n)
ij as C

(n)
ij = λ

(n)
ij +(1/D

(n)
ij). It can

then determine its best response, λ
(n+1)
i at n+1 through (14). Peer i relies only

on local measurements for computing its best response. We have experimentally
verified that the sequence of best response updates converges to the NEP, the
stable operating point with respect to unilateral peer deviations.

If ri = r, Ci = C for all i, at the NEP it is λ∗
ij = r

N−1 for all i ∈ N , j ̸= i,
that is, each peer splits its request load equally to all servers. The client delays
at NEP are Di(Λ

∗(0)) = 1/(C − r) for all i. In general, client delays at NEP
are not equal to each other. Note that the unsplittable one-to-one assignment,
where each client sends all load r to one server, and each server receives the
load of one client is not NEP.

4.1.2. Priority Service

Consider a given network service policy π other than FIFO, so that service
policy πj at server j is an absolute priority ordering. This is different than
FIFO, since now each client experiences different cost (average delay per unit
traffic) at different servers due to different service priorities at them. For each
client i and server j define C+

ij = Cj −Λi+
j to be the capacity of server j minus

the peer load routed to server j, which is served with higher priority than i.
Again C+

ij depends only on λ−i. Note that it may be πj
i < πk

i but C+
ij < C+

ik,
for some servers j, k. That is, although peer i may enjoy higher priority at
server j than at k, it may be more beneficial for i to allocate more load to k
rather than j, since the aggregate higher priority traffic at server j may be more.
The delay expression for fixed absolute priority service is different than that for
FIFO. However, we can prove uniqueness of the NEP even for this general case.
Thus, we have:

Theorem 1. For any network service policy π, the NEP for the client request
load splitting game is unique.

Proof. The proof is presented in the appendix.

To compute its best response, each peer i needs to know capacities Cj of
servers j. This information is available in contemporary peer-to-peer systems.

Similarly to FIFO, at each iteration interval n, a peer i can measure D
(n)
ij from

different servers j. Since it knows λ
(n)
ij , it can find C

(n)+
ij as the positive root of

equationD
(n)
ij x2−D

(n)
ij λ

(n)
ij x−Cj = 0. It then ranks servers j in decreasing order

of C+
ij/

√
Cj and derives its best response strategy λ

(n+1)
i to a given strategy

14

λ
(n)
−i of others as:

λij = C+
ij −

√
Cj∑K+

i

j ̸=i

√
Cj

(

K+
i∑

j ̸=i

C+
ij − ri) if j ≤ K+

i (16)

and λij = 0 otherwise, where

K+
i = max{ℓ : C+

iℓ ≥
√
Cℓ∑ℓ

j ̸=i

√
Cj

(
ℓ∑

j ̸=i

C+
ij − ri) }. (17)

The sequence of best response updates is again numerically verified to con-
verge to the NEP.

4.2. Altruistic Best Response Strategies

We now consider altruistic peers, i.e. βi = 1 for all i. All peers know that
they are altruistic. We study best response policies where each peer finds its
strategy λi by considering also its impact on average delays of other peers. For
given strategy profile λ−i, the best response policy of altruistic peer i emerges
as the solution of:

min
λi∈Fi

1∑
k rk

∑
j ̸=i

(
λijDij +

∑
k ̸=i,j

λkjDkj

)
= min

λi∈Fi

Dtot(Λ,π) (18)

4.2.1. FIFO Service

Since Dtot(·) is convex function of λi, a NEP exists. One can show that
Dtot(·) is jointly convex in Λ, since the Hessian matrix of Dtot(·) is positive
definite. The KKT conditions for peer i give:

Cj

(Cj − Λj)
2 = νi, if λij > 0, (19)

Cj

(Cj − Λj)
2 ≥ νi if λij = 0 .

Peer i finds its best response to λ−i as:

λij = Cij −
√

Cj∑Li

j ̸=i

√
Cj

(

Li∑
j ̸=i

Cij − ri), if j ≤ Li, (20)

and λij = 0 otherwise, where

Li = max{ℓ : Ciℓ ≥
(
∑ℓ

j ̸=i Cij − ri)∑ℓ
j ̸=i

√
Cj

√
Cℓ }. (21)

Each client i needs to know capacities Cj of all servers j. At each iteration n,

a peer i can measure D
(n)
ij from different clients j. Since it knows λ

(n)
ij , it can

15

find C
(n)
ij as in FIFO and then it ranks servers in decreasing order of Cij/

√
Cj .

Then it derives its best response strategy λ
(n+1)
i from KKT conditions above.

We now study NEPs and best response updates.

Equal Server Capacities
If Ci = C for all i, the global problem can be also expressed as:

min
Λ∈F

Dtot(Λ) = min
Λ∈F

1∑
k rk

N∑
j=1

Λj

C − Λj
. (22)

For this special case, the following theorem characterizes the limit points of
the sequence of best response updates.

Theorem 2. Given that Ci = C for all i, any limit point of the sequence of best
response updates, {Λ(k)}k=1,2,..., is a NEP of the altruistic client load splitting
game and an optimal solution to the global problem described by (22).

Proof. The proof is presented in the appendix.

The altruistic game leads to multiple NEPs Λ∗ that all minimize Dtot(·),
and all NEPs induce the same server load vector v = (Λ∗

1, . . . ,Λ
∗
N). Vector v

has some interesting properties.
First we give a few definitions. For an N -dimensional vector α, let α′ denote

the vector with the entries of α arranged in decreasing order, i.e α′
1 = maxi αi,

etc. Vector α is called lexicographically smaller than vector b, if either α′
1 < b′1

or, for some i, 1 ≤ i < N it is α′
j = b′j for 1 ≤ j ≤ i and α′

i+1 < b′i+1. A vector

α is called more balanced than b if
∑i

ℓ=1 α
′
ℓ ≤

∑i
ℓ=1 b

′
ℓ, for all i = 1, . . . , N .

The server load vector v at the NEP is the most balanced load vector, since it
minimizes

∑N
i=1 G(Λj) where G(·) is any nondecreasing strictly convex function

[30], [31, Theorem 7]. Furthermore, v is the lexicographically minimal vector.
If ri = r for all i, the optimal average delays of all clients are all equal to

1/(C − r).

Unequal Server Capacities
The proof outlined for the previous case cannot be applied here.However,

the sequence of best response updates is in essence a sequence of Gauss-Seidel
iterations for problem (18). Since Dtot(·) is jointly convex with respect to Λ
and convex with respect to λi for fixed λ−i, this sequence converges to limit
points that are global minima of Dtot(·) [32, pp.219-221] and also NEPs of the
altruistic game.

4.2.2. Priority Service

For a given service profile π other than FIFO, altruistic best response up-
dates by peer i are optimization problems that are convex in peer i’s strategy
λi. However, now the expression for delay becomes more complicated and may

16

not be jointly convex in Λ. In its best response, each peer i minimizes its own
delay plus delays of peers that are served with lower priority than i at different
servers. Besides server capacities, peer i needs to know the amount of higher
priority traffic of each client ℓ at each server j. A Gauss-Seidel descent argument
guarantees the existence of limit points of the best response sequence. The limit
points of best response updates are again NEPs of the game, but they are now
local minima of Dtot(·). Our intensive numerical experiments indeed verify the
existence of multiple NEPs with suboptimal performance, which are limit points
of the best response sequence.

4.3. Best Response Strategies for Heterogenous Swarms

The assumption of selfishness has been repeatedly questioned by economists
and psychologists due to innate altruism observed in human beings ([34],[35]).
Additionally, the lack of any incentive mechanism makes the scenario of het-
erogenous peers, i.e. peers characterized by different levels of altruism, the most
common in practice. Thus, a swarm may consist of some egotistic and some al-
truistic peers, or even peers exhibiting behavior between the two extremes. We
call the latter β-altruists with 0 < βi < 1.

Our previous analysis can be straightforwardly extended to capture such
scenarios, with the difference that uniqueness of NEP cannot be guaranteed.
However, our numerical results indicate that any swarm including at least two
fully altruistic peers has multiple NEPs, since the existence of the fully altruistic
peers guarantees that equivalent traffic splitting strategies exist. For swarms
consisting only of β-altruists, i.e. βi = β ∀i ∈ N , we have identified that when
the FIFO service discipline is applied we have a unique NEP for any β < 0.5,
whereas for the priority service the transition to multiple NEPs can occur even
for smaller β values.

The cases of βi > 1 and βi < 0 may also arise in a network, indicating benign
and malicious users respectively. Finally, a user may exhibit different behavior
against different peers, i.e. peer i may be altruistic regarding the delay of user
j and egotistic towards another peer k. Such scenarios are beyond the scope of
this work and thus not considered here.

5. Client - Server Games

We now consider the case where peers can change their service strategy in
addition to the client request load splitting strategy. Our objective is to devise
game theoretic models that capture the joint client-server strategy space of
peers. We consider egotistic peers. A change of service rule at servers leads to
different advertised delays to clients, who in turn need to readjust their request
load splits in a best response fashion, so that they minimize their delay for the
new service regime. In section 4, a peer could affect its delay by controlling the
portions of content request load addressed to different servers. But, how can a
peer really affect its own delay by altering its service strategy?

Although a peer cannot affect its delay directly by changing its service policy,
it may select a service policy such that the NEP after the next client request

17

load splitting game is most beneficial for the peer in terms of delay. Suppose
that at a NEP, peer i observes large delay D∗

ij at some peer j, and it realizes
that this is mainly due to a peer k with large load λkj which is served by j with
higher priority than i. Then, peer i may decide to offer peer k higher priority
than before by changing its service discipline. At the next round of egotistic
load splits, peer i will attract part of the request load of k, since k will selfishly
split its request load toward peers that advertise low delays. As a result, peer i
will have less load of higher priority of k to confront at server j. Hence, delay
D∗

ij (and therefore D∗
i) will be reduced at the resulting NEP .

In Section 4, we defined the NEP for the client load splitting game for
given server strategy profile π, call it Λπ . We now generalize this defini-
tion as follows. A client load splitting strategy and server strategy (Λ∗,π∗) =

(λ∗
1, . . . ,λ

∗
N ,π∗

1, . . . ,π
∗
N) ≡ (Λπ∗

,π∗) is a NEP if for all λi ̸= λ∗
i , πi ̸= π∗

i , and
all i ∈ N , Di(λ

∗
i ,λ

∗
−i,π

∗
i ,π

∗
−i) ≤ Di(λi,λ

∗
−i,πi,π

∗
−i) or equivalently, if

Di(Λ
(π∗

i ,π
∗
−i),π∗

i ,π
∗
−i) ≤ Di(Λ

(πi,π
∗
−i),πi,π

∗
−i) (23)

for all πi ̸= π∗
i , and all i ∈ N . That is, any change in the service strategy of any

peer i will result to a client game whose NEP is characterized by larger average
delay for i than the current one Di(Λ

(π∗
i ,π

∗
−i),π∗

i ,π
∗
−i).

5.1. Service strategy selection in Client-Server Games

We devise two-level games to capture the double client-server role of a peer.
Peers take turns and the game goes as follows. At each iteration, a peer de-
termines a best response service strategy and announces it to all. This service
strategy is found so that the delay of that peer at the NEP after peers play
the client game is as small as possible. Subsequently, peers play a client load
splitting game based on this service profile and perform best response request
load splitting updates until convergence to the (pre-computed) NEP. In the
next round, another peer adjusts its service policy, and peers again play the
load splitting game based on the new ensemble of server strategies, and so on.

The model we consider is reminiscent of an extended version of two-level
Stackelberg games [33]. In classic Stackelberg games there exists one fixed
dominant player, the leader, and other players, the followers. At the upper
layer, the leader attempts to minimize its cost subject to all followers being
in competitive equilibrium. After the leader selects its strategy, the followers
at the lower layer play their game and reach equilibrium. The initial strategy
selection by the leader is done by foreseeing the equilibrium strategy of followers
under a given leader strategy and then optimizing the leader strategy. Clearly,
the leader strategy affects the follower equilibrium.

In our case, a leader is a peer that chooses its service policy. The followers
are the clients that interact and reach equilibrium in their content request load
splitting game, under a given selected service strategy. The migration from the
classical Stackelberg model lies in the fact that leaders vary at each stage and
also that leaders are part of the lower level game. Each time a different peer
takes turn and selects its service strategy by optimizing its own derived delay

18

ENDIs current server−client profile a NEP?

One peer, i changes its service strategy

to the one that minimizes its own delay

at client NEP

profile and reach NEP

Clients play client game for the new service

n <− n+1

No

Yes

Figure 2: Diagram of two-level game-theoretic server-client interaction.

at the NEP that will emerge after peers play the client game. The sequence of
moves in shown in Figure 2.

Given the service policies π−i of peers other than i, consider the problem
faced by peer i. This consists in finding a service policy πi out of the set of
possible ones,

Πi = {ami ≥ 0,m ∈ Mi :
∑

m∈Mi

ami = 1} ,

such that the delay D∗
i at the NEP after the forthcoming client load splitting

game is minimized. Set Πi encompasses absolute priority rankings of peers in
N \{i} (out of set Mi of the (N − 1)! available ones), or mixtures of absolute
priority rankings.

The delay of peer k at server i is Dki =
∑

m ami Dm
ki, where, according to (3),

Dm
ki =

Ci

(Ci − Λmk+
i)(Ci − Λmk+

i − λki)
(24)

is the delay experienced by client k at server i for the specific service priority
ranking m, and Λmk+

i the request load of peers of higher priority than k at
server i for the priority ranking m.

Peer i needs to go one step ahead and predict the client NEP strategy,
assuming that he selects service strategy πi. Namely, it needs to find the NEP
splits Λ(πi,π−i), namely the splits (λ∗

kℓ : k = 1, . . . , N, ℓ ̸= k) for each peer k
to each server ℓ ̸= k (including server i) for the subsequent client game. To do
so, it uses KKT conditions (Appendix A.1) for each pair of client k and server

19

ℓ ̸= k and solves them to derive the client NEP as function of πi. At round n,
a server i chooses service policy

π
(n)
i = arg min

πi∈Πi

Di(Λ
(πi,π

(n−1)
−i),πi,π

(n−1)
−i) . (25)

Thus, peer i wishes to determine the best response server strategy π
(n)
i

consisting of the fractions allocated to different priority rankings, {ami },m =
1, . . . , |Mi|, with

∑
m∈Mi

ami = 1, so that its delay at NEP,

D∗
i =

1

ri

∑
j ̸=i

∑
m∈Mj

amj Dm∗
ij (26)

is minimum. Note that fractions {ami } are implicit in expressions Dm∗
ij =

Cj [(Cj − Λmi+∗
j)(Cj − Λmi+∗

j − λij)]
−1

, since they affect allocated loads of all
peers at different servers j.

Peer i announces strategy π
(n)
i to all others. After that, peers play the client

load splitting game and yield the (anticipated) NEP. Next, at round n + 1,
another peer computes its best response service strategy by finding its own
fractions of different priority rankings so as to minimize its own delay at the
forthcoming client NEP, then peers play the splitting game, and so on. We
assume that each peer chooses his service policy at least once within a given
time horizon. A NEP (Λπ∗

,π∗) consists of a splitting strategy Λ∗ and priority
fractions π∗ = {am ∗

i : m ∈ Mi, i ∈ N} and is guaranteed to exist, since π∗

can be viewed as a mixed strategy over the finite set of pure strategies, i.e.
the different possible priority rankings. Since the strategy space of each peer i,
Πi ∪ Fi is compact and convex and the delay D∗

i of peer i at the client NEP
is continuous function in Π, the sequence of server best responses delineated by
client-server games in Figure 2 converges to an equilibrium.

Although for NEP (Λπ∗
,π∗) with Λπ∗

= (λπ∗

1 , . . . ,λπ∗

N) we have that each

λπ∗

i is a continuous function of π∗ on Π1×. . .×ΠN , the computation of the best
response server strategy πi by each peer i may require several computations and
information that needs to be circulated. To reduce computational burden, peers
could consider only pure service strategies, namely absolute priority rankings.
In that case, Πi includes only the (N − 1)! possible priority rankings m =
1, . . . |Mi|. For each such priority ranking m, a peer i runs a provisional client
game and computes delay at the NEP, D∗

i (m). Then, it selects the service
ranking m∗ = argminm D∗

i (m). However, existence of NEP is not guaranteed
in that case.

Though a peer may improve its delay by modifying its service discipline, the
best response service strategy may not be applicable due to increased complex-
ity. Thus, in a real system each peer i may perform heuristically good response
service strategy updates based on heuristic metrics for prioritizing peers, where
no a priori computation of the system NEP is required. Peer i may compute
these metrics for j ̸= i and find an absolute or mixed priority ordering according
to them. Such metrics are:

20

• A metric that quantifies total hindrance that peer j causes to i in all
servers where j enjoys higher priority than i:

Θij =
∑

ℓ:πj
ℓ<πi

ℓ

λjℓ

Cℓ
. (27)

Note that we normalize the load by the server capacity.

• A metric that captures total absolute delay reduction for peer i per unit
of removed flow of peer j at various servers, given that j is served with
higher priority than i at these servers. This metric is given by:

Hij =
∑

ℓ:πj
ℓ<πi

ℓ

∣∣∂Diℓ

∂λjℓ

∣∣ . (28)

Both metrics attempt to quantify the gain of prioritizing a specific peer.
Thus, each server peer i should prioritize peers in decreasing order of metrics
Θij or Hij . That is, the highest priority should be provided to the peer with
the highest metric value and so on. Alternatively, i may find a mixture of
absolute priorities with priority portions analogous to the metrics above e.g. by
assigning the priority fractions such that

∑
m∈Pk

i
ami = Θik∑N

j=1 Θij
∀k ∈ N \ {i},

with Pk
i ⊂ Mi the set of priority orderings where peer k enjoys the highest

priority and so on. Alternatively, i could choose only a subset of peers, e.g.
those with the larger metrics and apply mixtures of priority orderings based on
the metrics above.

6. Numerical Results

First, in order to obtain insight on the proposed game models and the impact
of various parameters on performance, we simulate using MATLAB a small
system of N = 5 peers. Further on in this section, we consider also swarms of
up to 50 peers, in order to demonstrate scalability of the proposed approach
and to observe the impact of swarm size on system performance.

For better tractability of results we first consider a network where each
peer i has service capacity Ci = 256 Kbps and average request file size Li =
1024KB. These are typical values for home users (e.g. ADSL upload rate is of
the order of 1 Mbps) requesting small files or even chunks of a bigger file. For
request load vector r = [1.6875, 1.6875, 1.1250, 0.5625, 0.5625] (in requests/min),
the global optimal solution balances the load across servers, i.e. it is Λj =
1.125 requests per minute for all j. However, this is not always the case. For
load vector r = [5.5125, 0.2625, 0.2625, 0.2625, 0.2625], at the optimal solution,
the load is not totally balanced, but is distributed across servers as follows:
[1.05, 1.38, 1.38, 1.38, 1.38], which is the most balanced traffic splitting. Actually
in this case peers 2− 5 do not generate enough load to balance the effect of the
actions of peer 1.

21

In order to quantify the performance of the proposed schemes, we define the
following performance metrics:

• Total Delay, Dtot(Λ
∗). This is the total average network delay at the

NEP.

• Price of Anarchy, PoA. This is a metric of the proximity of the value
of Dtot(·) at NEP Λ∗ to its value at the global optimum Λ0, i.e., it is

PoA =
Dtot(Λ

∗)

Dtot(Λ
0)
. (29)

If several equilibria exist, the worst one, namely the one with the largest
delay, is considered.

• Fairness Index, F . This is a measure of the dispersion of delay values
Di(Λ

∗) and is defined as follows:

F =

[∑N
i=1 Di(Λ

∗)
]2

N
∑N

i=1 D
2
i (Λ

∗)
, (30)

Notice that under FIFO scheduling optimum delay can be easily calculated,
since it coincides with the performance of the altruistic scheme. This is also
the optimum of any priority service discipline, if the mean size of requests Li

is the same for all peers. For the general case though, the optimum cannot be
always calculated. Instead, the delay of an M/M/1 queue of service capacity

C =
∑N

j=1 Cj that serves all the requests provides a lower bound of total average
network delay Dtot. This bound is generally accurate for small swarms in the
heavy load regime.

For comparison purposes, we consider also a one-shot client load splitting
strategy, namely a Proportional Scheme, where each client allocates its request
load to servers in proportion to server capacities, i.e λij =

riCj∑N
k ̸=i Ck

for j ̸= i.

Whenever we refer to absolute priority service, we imply without loss of
generality that priorities are assigned according to the index of each peer. Thus,
peer 1 always enjoys the highest priority and peer N the lowest one. The

system utilization factor, ρ =
∑N

i=1 riLi∑N
j=1 Cj

will also be used in our simulations to

determine the request load vector. Finally, whenever we have multiple equilibria,
depicted values are the averages of several simulation runs. For the rest of this
section, peers have different upload capacities C = [128, 256, 640, 768, 768] (in
Kbps), which for an average request file size of L = 1024KB lead to a maximum
supported load of [5.625,5.625,3.75,1.875,1.875] requests/min and equivalently
to a utilization factor of ρ = 1.

6.1. Client Games with unconstrained requests

Initially, we consider the scenario of unconstrained requests, i.e. each peer
can potentially address a portion of its request load to any other peer. In

22

Table 1: Total average retrieval delay (Dtot) at NEP for different scenarios

FIFO Priority

Egot. Altr. Prop. Egot. Altr.

ρ = 0.4 21.284 21.156 25.175 21.255 21.159

ρ = 0.6 34.857 34.125 37.232 34.473 34.162

ρ = 0.8 72.289 71.188 74.944 74.150 71.457

ρ = 0.4(Ψ) 21.328 21.156 27.275 21.734 21.162

ρ = 0.6(Ψ) 34.644 34.126 45.882 35.516 34.188

ρ = 0.8(Ψ) 72.109 71.188 1958.6 84.557 71.648

the upper part of Table 1, we show the total delay performance at NEP for
different load splitting strategies and different but fixed service strategies as
function of the request load. As we have shown in our analysis, the altruistic
FIFO game gives the system-wide optimal (minimum delay) performance. Our
simulations indicate that the egotistic FIFO game leads to a NEP of near optimal
performance (e.g. within 1 − 2%). This can be justified since all client peers,
as they contend for the resources of a specific server peer, experience same
average retrieval delay. Thus, whenever a peer selects its traffic load splits, it
considers the total load in each server and tries to keep it somewhat balanced.
Eventually although each peer attempts to minimize its own delay, an underlying
coordination of peers occurs. This is not case for the priority egotistic game
though. He we considered a swarm of users that are characterized by diverse
load and upload capacity profiles. The corresponding delay performance of a
uniform swarm would be the order of [26.7, 40, 80] minutes for ρ = [0.4, 0.6, 0.8]
respectively. Thus, it is verified that diverse load/capacity profiles are beneficial
for the system.

For high enough values of system utilization ρ, we noticed that a high priority
peer may select a strategy that, though feasible for itself may be infeasible for
the system, leading thus to instability. This is indeed possible, since the delay
of a high priority peer does not depend on others’ selections, while his actions
affect the delay of lower priority peers. Thus, for ρ > 0.9, it is quite common
that the set of feasible network load splitting strategies becomes empty, since
peers’ selected strategies do not satisfy necessary and sufficient conditions for
stability. In other words, the system converges to an equilibrium point, where
high priority peers experience extremely low delays, while lower priority ones
experience infinite delays which in turn leads to infinite delay for the entire
system as well. This is also indicated in the following figures by the absence
of the corresponding points for high values of ρ. This phenomenon does not
appear in the FIFO egotistic scenario, since all peers work towards guaranteeing
stability of each server.

Figure 3(a) depicts the PoA of the client games as a function of ρ. A value of
PoA close to 1 means less divergence from the social optimum due to selfishness.

23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

 System Utilization ρ

P
ri
c
e
 o

f
A

n
a
rc

h
y

FIFO proportional

FIFO egotistic

FIFO Altruistic

Priority egotistic

Priority altruistic

(a) Price of Anarchy metric

0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 System Utilization ρ

F
a
ir
n
e
s
s

FIFO proportional

FIFO egotistic

FIFO Altruistic

Priority egotistic

Priority altruistic

(b) Fairness metric

Figure 3: Performance of the network for different values of system utilization factor ρ

For ρ > 0.94, no feasible traffic splitting can be found in the priority egotistic
scenario. As expected, altruistic games are characterized by smaller PoA values,
since each peer considers the effect of its actions on others. All games have a
PoA of less than 1.46, i.e. lie within 46% of the optimum, whenever a feasible
solution can be found. The proportional scheme performs significantly worse.

On the other hand, from Figure 3(b), it can be deduced that priority-
based schemes become quite unfair as the load increases, since they tend to
prioritize some peers at the expense of others. For example, although Fig-
ure 3(a) shows that for ρ = 0.6, the altruistic games for FIFO and priority
service have identical performance, individual delays are quite different. De-
lay vectors of peers at the NEP are: DFIFO = [32.3, 33.7, 35.7, 38.3, 33.3] and
DPr = [15.3, 33.4, 42, 55.7, 55.7] respectively. Thus, high priority peers experi-
ence extremely low delays, compared to the FIFO case where delays are quite
balanced. This difference becomes more evident as the load increases.

6.2. The impact of altruism-parameter β

In this section, we consider the impact of peer behavioral profiles, as these
are captured by the β parameters, on the resulting equilibria. In the following
figures, besides the arithmetic mean of the considered performance metric, we
depict the highest and the lowest values out of 2000 simulation runs. This
’variance’ serves among others as an indication of the existence of multiple
NEPs. Initially, we assume that only two types of peers exist, the egotistic and
the fully altruistic ones of β = 1. In Figure 4(a) we show that the average
retrieval delay of a P2P system decreases with the number of altruistic peers.
The ’variance’ ofDtot is a sufficient condition for the existence of multiple NEPs.
In general, the existence of at least two altruistic nodes leads to multiple NEPs.
This is also evident from the plot for the priority service discipline. In the FIFO
case, multiple NEPs appear, but all have the same Dtot performance.

24

−1 0 1 2 3 4 5
71

71.5

72

72.5

73

73.5

74

74.5

75

 # Altruistic Nodes (out of 5)

A
v
e
ra

g
e
 R

e
tr

ie
v
a
l
D

e
la

y

D
tot

 FIFO

D
tot

 Priority

D
tot

 Proportional

(a) Number of altruists

−0.2 0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

80

 Behaviour β of peer 1

A
v
e
ra

g
e
 R

e
tr

ie
v
a
l
D

e
la

y

D
tot

 FIFO

D
tot

 Priority

D
tot

 Proportional

D
1
 FIFO

D
1
 Priority

(b) A swarm with a unique β-altruist

−0.2 0 0.2 0.4 0.6 0.8 1
10

20

30

40

50

60

70

80

 Behaviour β of the 5 peers

A
v
e
ra

g
e
 R

e
tr

ie
v
a
l
D

e
la

y

D
tot

 FIFO

D
tot

 Priority

D
tot

 Proportional

D
1
 FIFO

D
1
 Priority

(c) A swarm of β-altruists

Figure 4: Average Retrieval Delay vs. Behavior of nodes (β parameter)

Next, we investigate the scenario of users exhibiting behavior between the
two extremes of egoism and full altruism. We consider a swarm consisting of a
number of fully altruistic peers and some β-altruists. Figure 4(b) depicts the
scenario of four altruists and peer 1 characterized by 0 ≤ β ≤ 1. We plot the
Dtot metric and the delay of peer 1, i.e. the peer of highest priority. As the level
of altruism increases the individual performance degrades but the total delay
remains unchanged. Interestingly, increasing altruism causes also the increased
variance for both the FIFO and priority schemes.

Figure 4(c) depicts the delay performance of a network of 5 β-altruists. Here,
a more significant impact on the total delay can be observed. In addition, the
delay of the highest priority peer is no more monotonous in β, with maximum
average delay observed for β = 0.6. Subfigures 4(b), 4(c) indicate that unique-

25

ness of NEP is guaranteed for β < 0.5 in the FIFO scenario, while the transition
to multiple NEPs occurs earlier for the priority scheme.

6.3. Client Games with constrained requests

Previous results have been derived under the assumption of unconstrained
requests, i.e. a peer is interested in content of any other peer. However, in
reality, this is usually not the case. For example, there may be some rare files
that are available only at a small number of peers. Such scenarios arise when
a new file appears in the system, or when a file is not popular. We capture
such constrained scenarios by a binary N × N matrix Ψ of zero diagonal. In
essence, this is the adjacency matrix of the overlay graph. Element Ψij indicates
whether peer i is interested in j’s content. Thus, each client peer i may split its
request load only to the set of peers {j : Ψij = 1}. For the arbitrary matrix

Ψ =

0 1 1 0 1
1 0 0 1 1
0 1 0 1 0
1 0 0 0 1
0 1 1 0 0

 ,

we get the delays shown at the bottom part of Table 1. These results are not
directly comparable to the previous ones, since they refer to a different, sparser
overlay graph. The delay generally increases, since each peer has fewer candidate
neighbors to split its traffic to. Note that the slight decrease of delay in some
cases is attributed to the fact that the system converges to a different NEP,
since the NEP is not unique anymore.

Next, in order to investigate the impact of content availability on system
performance, we consider a swarm of N = 50 peers. The upload capacity
C of each peer is uniformly distributed in [128,1024]kbps and connectivity is
randomly generated. The percentage of 1’s in matrix Ψ is indicative of content
availability and we denote it with A.

Figure 5 depicts how PoA, fairness and average retrieval delay evolve as
content progressively becomes available. We start from a limited connectivity
scenario of A = 2% with Ψi i+1 = 1 ∀i, whereas the rightmost point corresponds
to the unconstrained case. Figure 5(a) reveals that all schemes perform close
to the optimal. There are instances though, where limited content availability
causes noticeable performance degradation to the egotistic approaches. Perfor-
mance degradation of selfish approaches holds in general for scenarios of low to
medium availability. Interestingly, at the extreme where only a few peers posses
each object, load splitting cannot be performed in many ways, and hence selfish
splitting is very similar to the optimal one. The same holds also for the case of
full availability, where the load is equally balanced even under selfishness.

In Figure 5(b), we see that all schemes generally become more fair as avail-
ability increases. This is expected, since each peer has more options to split its
traffic to, and hence the traffic at NEP becomes more balanced among servers.

26

10 20 30 40 50 60 70 80 90 100
1

1.05

1.1

1.15

1.2

 Availability A (%)

P
ri
c
e
 o

f
A

n
a
rc

h
y

FIFO egotistic

FIFO Altruistic

Priority egotistic

Priority altruistic

(a) Price of Anarchy

10 20 30 40 50 60 70 80 90 100

0.5

0.6

0.7

0.8

0.9

1

 Availability A (%)

F
a
ir
n
e
s
s

FIFO egotistic

FIFO Altruistic

Priority egotistic

Priority altruistic

(b) Fairness

0 20 40 60 80 100
70

72

74

76

78

80

82

84

86

88

 Availability A (%)

A
v
e
ra

g
e
 C

o
n
te

n
t

R
e
tr

ie
v
a
l
D

e
la

y

FIFO egotistic

FIFO Altruistic

Priority egotistic

Priority altruistic

(c) Delay

Figure 5: Performance vs. Availability A. Higher A indicates greater content availability.

The relative fairness of the various schemes is not affected by content availabil-
ity, except for the extremely sparse scenarios where the choices are so limited
that all schemes perform identically. Figure 5(c) we depict the impact of con-
tent availability on average retrieval delay. As availability increases, the average
delay decreases significantly. However, under priority service and egotistic be-
havior, increasing availability may also have the opposite result. Such a scenario
arises when high priority peers exploit all the available servers and hence cause
significant performance degradation to lower priority ones (as depicted for avail-
ability of 12%) .

Notice that availability matrix is a structure that allows us to model evolu-
tion of contacts among peers. Each peer needs to know only its own row, i.e the
set of peers that it can split its requests to; this information is available at con-
temporary peer-to-peer networks through content discovery mechanisms. The
introduction of matrix Ψ may also capture peer dynamics, i.e. peers entering or
leaving the system. When a newcomer k requests an object, a new row is added

27

0 5 10 15 20 25 30 35 40
70

71

72

73

74

75

76

77

 # of freeriders

A
ve

ra
ge

 C
on

te
nt

 R
et

rie
va

l D
el

ay

FIFO egotistic
FIFO Altruistic
Priority egotistic
Priority altruistic

Figure 6: The impact of freeriding on delay performance Dtot

in Ψ. Besides, future requests for k’s content will update the matrix by adding
1’s in respective positions. The event of a peer leaving the system is equivalent
to elimination of its row and column.

In addition, availability matrix enables us to model freeriding behavior, i.e.
peers that are not willing to provide any content/upload capacity to others. In
particular, for each freerider the corresponding column is a zero vector since no
other peer can have part of his requests satisfied there. As expected, we observe
in Figure 6 that freeriding causes significant performance degradation for all the
schemes.

6.4. The impact of service strategy

From the hitherto numerical study, one might claim that the FIFO egotistic
approach always exhibits near-optimal performance, since it seems to guarantee
both near-optimal delay and fairness. However, if we consider peers of different
average request sizes, say L = [0.5, 7, 30, 200, 700]MB, corresponding to users
that are interested in different types of files ranging from simple documents up
to movies, we get significantly higher delays at the FIFO NEP than that of the
priority schemes (see Figure 7(a)). By prioritizing peers that request small files
as cµ rule dictates [1], we may get significantly lower delay per request. In other
words, in order to minimize the mean waiting time per request (or equivalently
maximize the number of requests that get served per unit of time), we need
to apply the Shortest Expected Processing Time (SEPT) service discipline, i.e
prioritize peers in order of increasing Li. However, this approach may cause
significant increase in the waiting time of requests for bigger files.

On the other hand, if we cannot provide incentives to the peers to assign
the priorities the proper way, we may experience significant performance degra-
dation. For example, in Figure 7(a) we present the worst case performance,
achieved by assigning the priorities inversely to what the cµ rule dictates. Fi-
nally, in Figure 7(b) we demonstrate that all the proposed schemes are also

28

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

140

160

180

200

System Utilization ρ

A
v
e
ra

g
e
 R

e
tr

ie
v
a
l
D

e
la

y
 (

m
in

u
te

s
)

FIFO egotistic

FIFO altruistic

Priority egotistic(Best)

Priority altruistic(Best)

Priority egotistic (Worst)

Priority altruistic (Worst)

(a) As an expression of the system utilization
factor ρ

0 5 10 15 20 25 30 35 40 45

0

5

10

70

80

90

100

110

 # Nodes

(b) As an expression of the number of peers in the
swarm for ρ = 0.6

Figure 7: Average retrieval delay for requests of different sizes

applicable in larger networks. For comparison purposes, we depict also the
lower bound of delay resulting from the single server abstraction of the P2P
system. Although the number of participating peers has minor impact on sys-
tem performance at the resulting equilibria, we observe that the lower bound is
only meaningful for small enough swarms.

6.5. Client-Server Games

For the two-level client-server games, we need a small enough network so
as to be able to track the two-level peer interactions. Thus, we simulate a
network of N = 3 peers with capacities C = [384, 256, 128] and low enough
loads, r = [0.6563, 1.0313, 1.1250] to guarantee stability. In Table 2, we depict
results on total average and individual peer delays at the NEP. All peers are
fully egotistic, but for comparison purposes we also provide the NEP delays for
the altruistic scenario.

Initially, peers have no information about the network and hence all apply
FIFO discipline. The resulting delays at NEP are presented in the second col-
umn. Once a peer (say peer 1) has collected sufficient data, it may decide to
change its service strategy. Peer 1 determines its best response service policy
from 25 and subsequently clients play the load splitting game. The resulting
delays at NEP are shown in column BR1. Our simulations show that peer 1 will
give absolute priority to peer 3. Thus, at the resulting NEP peer 1 manages to
improve his delay (49.23 units) by modifying his service discipline. We obtain
similar results when peer 1 selects his new service discipline based on the pro-
posed heuristics (this is not depicted in the table). In the next round, another
peer may modify its service discipline until convergence. Such games in general
have multiple equilibria to which the client-server best response(BR) updates
converge. As anticipated, the Θij-based heuristic does not always converge to
an equilibrium, while the Hij-based one has a stationary point, albeit different

29

Table 2: Client (FIFO) games and Client-Server games

Client (FIFO) Client-Server

Altr. Egot. BR1 BR Θij Hij

Dtot 58.25 58.39 62.48 60.02 63.06 60.24

D1 62.54 66.42 49.23 56.14 51.54 57.51

D2 60.47 55.83 100.3 91.21 44.56 50.68

D3 53.71 56.05 35.55 33.68 86.75 70.60

from the BR equilibrium. In the specific scenario though all games converge,
and the performance at the resulting NEPs is depicted in the last three columns.

From the above, it can be deduced that if each peer is allowed to selfishly
select its service strategy, the system performance degrades, but interestingly,
not much. On the other hand, the performance of the individuals changes
significantly, but in general we cannot predict who will finally benefit. Each
peer enjoys some performance gain only for limited time, namely until the rest
of peers reply by changing their own service disciplines.

7. Conclusion

In this work, we investigated the double client-server role of peers and char-
acterized the NEPs emerging from best response strategy updates. The peer
strategy set comprises client request load splits alone, or together with service
strategies. Interestingly, we have demonstrated that the service discipline of
a peer implicitly determines its own performance.The proposed framework can
model swarms of any size, as long as each peer controls a positive, non-negligible
amount of request rate. This holds for the initial dissemination phase of a file
and the final stages where most seeders have left the swarm, which are the most
crucial ones due to the limited availability of content.

In addition, our model captures a range of peer behaviors, ranging from
egotistic up to altruistic. Our results reveal how that range is depicted into
file retrieval delay. We also dealt with the system collective behavior in terms
of equilibria for different populations of altruistic and egotistic peers and we
demonstrated that introducing altruism causes a transition from one to multi-
ple equilibrium points. In this work, we have assumed that peer behaviour is
determined by their level of altruism. However, the employment of reputation
methods for gradually revealing peer profiles and guiding the system to efficient
equilibria is interesting topic for future study.

30

[1] J. Sethuraman and M. Squillante, “Optimal stochastic scheduling in multi-
class parallel queues”, Proc. ACM SIGMETRICS, 1995.

[2] S. Borst, “Optimal probabilistic allocation of customer types to servers”,
Proc. ACM SIGMETRICS, 1995.

[3] Z. Ge, D.R. Figueiredo, S. Jaiswal, J. Kurose and D. Towsley, “Modeling
peer-peer file sharing systems”, Proc. IEEE INFOCOM, 2003.

[4] M. Adler, R. Kumar, K. Ross, D. Rubenstein, T. Suel and D.D. Yao, “Op-
timal peer selection for P2P downloading and streaming”, Proc. IEEE IN-
FOCOM, 2005.

[5] P. Parag, S. Shakkottai, and I. Menache, “Service Routing in Multi-ISP Peer-
to-Peer Content Distribution: Local or Remote?” Proc. ACM Gamenets, pp
353-368, 2011.

[6] D. Qiu and R. Srikant, “Modeling and performance analysis of BitTorrent-
like peer-to-peer networks”, Proc. ACM SIGCOMM, 2004.

[7] T. Moscibroda, S. Schmid and R. Wattenhofer, “Topological Implications
of Selfish Neighbor Selection in Unstructured Peer-to-Peer Networks” Algo-
rithmica, vol 61 no. 2, pp 419-446 , 2011.

[8] H. Zhang, G. Neglia, D. Towsley, G. Lo Presti, “On Unstructured File Shar-
ing Networks”, Proc. IEEE INFOCOM, 2007.

[9] E. Maani Z. Chen and A.K. Katsaggelos, “A game theoretic approach to
video streaming over peer-to-peer networks,” , Signal Processing: Image
Communication vol. 27, no.5 pp. 545-554, 2012.

[10] N.Nisan, T. Roughgarden, E. Tardos and V.V. Vazirani (eds), Algorithmic
Game theory, Cambridge University Press, 2007.

[11] A. Orda, R. Rom and N. Shimkin, “Competitive routing in multiuser com-
munication networks”, IEEE/ACM Trans. Networking, vol.1, no.5, pp.510-
521, Oct. 1993.

[12] C. Papadimitriou, “Algorithms, games and the internet”, Proc. ACM
Symp. Th. of Comput., 2001.

[13] T. Roughgarden and E. Tardos, “How bad is selfish routing”, Journal of
ACM, vol.29, pp.235-259, 2002.

[14] T. Roughgarden, “The price of anarchy is independent of the network topol-
ogy”, Journal of Comput. System Sci., vol. 67, no.2, pp.341-364, 2003.

[15] T. Wu and D. Starobinski, “On the price of anarchy in unbounded delay
networks”, Proc. ACM GameNets, 2006.

31

[16] B. Awerbuch, Y. Azar and A. Epstein, “The price of routing unsplittable
flow”, Proc. ACM Symp. on Theory of Comp. (STOC), 2005.

[17] P.-A. Chen and D. Kempe, “Altruism, selfishness, and spite in traffic rout-
ing”, In Proc. 9th Conf. Electr. Commerce (EC), 2008.

[18] A. Prakash Azad, E. Altman and R. El-Azouzi, “Routing games: From
Egoism to Altruism”, INRIA Tech. Report No. 7059, Oct. 2009.

[19] L. Libman and A. Orda, “Atomic resource sharing in non-cooperative net-
works”, Telecommun. Sys., vol. 17, no. 4, pp. 385-409, 2001.

[20] Y.A. Korilis, A.A. Lazar and A. Orda, “Capacity allocation under non-
cooperative routing”, IEEE Trans. Aut. Contr., vol.42, no.3, pp.309-325,
March 1997.

[21] Y.A. Korilis, A.A. Lazar and A. Orda, “Achieving Network Optimal using
Stackelberg routing strategies”, IEEE/ACM Trans. Networking, vol.5, no.1,
pp. 161-173, Feb. 1997.

[22] V. Misra, S. Ioannidis, A. Chaintreau, and L. Massoulie, “Incentivizing
peer-assisted services: a fluid shapley value approach”. Proc. ACM SIG-
METRICS Performance Evaluation Review, vol. 38, no. 1, pp. 215-226, 2010.

[23] J. Park, and M. van der Schaar,“A Game Theoretic Analysis of Incentives
in Content Production and Sharing Over Peer-to-Peer Networks”, IEEE
Journal of Selected Topics in Signal Processing, vol.4, no.4, pp.704-717, 2010.

[24] R.J. La and V. Anantharam, “Optimal Routing Control: Repeated game
approach”, IEEE Trans. Aut. Contr., vol.47, no.3, pp.437-450, March 2002.

[25] I. Koutsopoulos, L. Tassiulas, L. Gkatzikis, “Client and server games in
peer-to-peer networks”, In Proc. IEEE Int. Workshop on Quality of Service
(IWQoS), 2009.

[26] D. Bertsekas and R. Gallager, Data Networks, Prentice Hall, 1992.

[27] I. Adan, Queueing Theory Course : Lecture Notes, Eindhoven Univ. of
Technology, available online: http://www.win.tue.nl/∼iadan/que/.

[28] S. Borst, L.C.M. Kallenberg and G.M. Koole, “Stochastic Operations Re-
search 2 : Stochastic Dynamic Programming and Control of Queues”, Lec-
ture Notes, CWI, Amsterdam.

[29] J.B. Rosen, “Existence and uniqueness of equilibrium points for concave
n-person games”, Automatica, vol.33, no.3, pp.520-534, July 1965.

[30] B. Hajek, “Performance of global load balancing by local adjustment”,
IEEE Trans. Inf. Theory, vol.36, no.6, pp.1398-1414, Nov. 1990.

32

[31] L. Georgiadis and L. Tassiulas, ”Optimal overload response in sensor net-
works”, IEEE Trans. Inf. Theory, vol.52, no.6, pp.2684-2696, June 2006.

[32] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation : Nu-
merical Methods, Athena Scientific, 1997.

[33] H. van Stackelberg, The Theory of Market Economy, Oxford University
Press, 1952.

[34] S.C. Kolm and J.M. Ythier,“Handbook of the Economics of Giving, Altru-
ism and Reciprocity: Foundations”, North Holland, 2006.

[35] H. Gintis,“Moral sentiments and material interests: The foundations of
cooperation in economic life”, The MIT Press, 2005.

[36] W. Saad, Z. Han, T. Basar, M. Debbah, and A. Hjorungnes, “A Coalition
Formation Game in Partition Form for Peer-to-Peer File Sharing Networks”.
Proc. IEEE GLOBECOM pp. 1-5. 2010.

33

Appendix A. Proof of Theorem 1

Let Λ, Λ̃ be two NEPs. We will prove that Λ = Λ̃. The KKT conditions
for Λ for the average delay imply that

Cj

ri(Cj − Λi+
j − λij)

2 = νi, if λij > 0, (Appendix A.1)

and Cj/[ri(Cj − Λi+
j)2] ≥ νi, if λij = 0, for i ∈ N . Similar conditions (with

different multipliers ν̃i) hold for Λ̃.
Similarly in rationale with [11, Th.2.1], we prove that for each client i, and

for each j ̸= i,

ν̃i ≤ νi and Λ̃i+
j ≥ Λi+

j imply that λ̃ij ≤ λij

ν̃i ≥ νi and Λ̃i+
j ≤ Λi+

j imply that λ̃ij ≥ λij .

Next, the proof differs from [11]. For some client k, define server sets N 1
k =

{j : Λ̃k+
j > Λk+

j }, N 2
k = N − N 1

k . Let N ′ = {i ∈ N : ν̃i > νi}. For i ∈ N ′,
i ̸∈ N ′ respectively, it is:∑

j∈N 1
k

λ̃ij = ri −
∑
j∈N 2

k

λ̃ij ≤ ri −
∑
j∈N 2

k

λij =
∑
j∈N 1

k

λij (Appendix A.2)

∑
j∈N 1

k

Λ̃k+
j =

∑
j∈N 1

k

∑
i:πj

i<πj
k

λ̃ij ≤
∑
j∈N 1

k

∑
i:πj

i<πj
k

λij =
∑
j∈N 1

k

Λk+
j . (Appendix A.3)

The last inequality contradicts the definition of N 1
k , which means that N 1

k is

an empty set. Similarly, set {j : Λ̃k+
j < Λk+

j } is empty. Thus, we have that

for every server j, it is Λ̃k+
j = Λk+

j for any client k. We proceed to show that

ν̃i = νi for each i. Thus, we get that λ̃ij = λij for every i and j, which implies
that the NEP is unique.

Appendix B. Proof of Theorem 2

The problem described by (22) falls within the class of problems:

Problem (P) : min
Λ∈F

D(Λ) = min
Λ∈F

N∑
j=1

G(Λj) (Appendix B.1)

where G(·) is a strictly nondecreasing convex function of load Λj at server j.
For problem (P), we have [30, Corollary 4]:

Fact 1. A feasible network load splitting policy Λ is solution to (P) for a given
strictly convex function G(·) if and only if it is a solution to problem (P) for all
convex functions.

34

In the sequel, we use function G(x) = x2. A solution to problem (P) with
G(x) = x2 is solution to (P) for any other convex function G(·) and thus a
solution to (22).

For a feasible network splitting strategy Λ ∈ F and client i, the altruistic
best response is a strategy TiΛ, where Ti is an operator on Λ, with TiΛ =
argminλi∈Fi

D(Λ), while strategies λ−i are kept fixed. Let Λ(0) be an initial

load splitting strategy, and let {ik}k≥1 be a sequence of client indices. Assume
there exists an integer ∆ such that for any integer ℓ and any i′ ∈ N , it is
ik = i′ for some k with ℓ ≤ k ≤ ℓ + ∆. In other words, all clients should
make an update within a finite period of ∆ iterations. Define the sequence
of assignments {Λ(k), k ≥ 0} recursively as Λ(k+1) = TikΛ

(k). We follow the
rationale in [30] with all necessary modifications. We first prove the following
lemma.

Lemma 3. Suppose Ci = C for all i. Let Λ, Λ̃ be feasible strategies based
on Λ and TiΛ respectively. For Λ ∈ F and i ∈ N , define ||Λ − TiΛ|| =
max
j∈N

|λij(Λ)− λij(TiΛ)|. Then,

||Λ− TiΛ||2 ≤ D(Λ)−D(Λ̃). (Appendix B.2)

Proof. Let Λj and Λ̃j be the loads of server j according to Λ and Λ̃. Since it

is
∑

j ̸=i λij =
∑

j ̸=i λ̃ij = ri, we get
∑

j∈N (Λj − Λ̃j) = 0. Define σ = minj Λj .
We have,

D(Λ)−D(Λ̃) =
∑

j∈N\{i}

(Λ2
j − Λ̃2

j)

=
∑

j∈N\{i}

[
Λ2
j − Λ̃2

j − 2σ(Λj − Λ̃j)
]

=
∑

j∈N\{i}

[
(Λj − σ)

2 − (Λ̃j − σ)
2
]

≥
∑

j∈N\{i}

(Λj − Λ̃j)
2 ≥ max

j∈N\{i}
|Λj − Λ̃j |

2

= max
j∈N\{i}

|λij − λ̃ij |
2
= ||Λ− TiΛ||2,

where the first inequality holds since −σ ≥ −Λ̃j for all j.

For Ci = C, D(Λ(k)) is monotone non-increasing with k, since D(Λ) −
D(T̃iΛ) ≥ 0 from Lemma 3.

Then we show the convergence of the iterative procedure. SinceD(·) is a non-
negative and continuous function, we have that limk→∞(D(Λ(k+1))−D(Λ(k))) =

0. In addition, we have limk→∞ D(Λ(k)) = D(Λ∗) for any limit pointΛ∗ ofΛ(k),

35

k ≥ 0. From Lemma 3, it follows that limk→∞ |Λ(k+1) −Λ(k)| = 0. Since map-
ping Ti is continuous for all i, we have TiΛ∗ = Λ∗ for any i and any limit point
Λ∗. This means that no peer i can benefit from unilaterally deviating from Λ∗,
hence Λ∗ is a NEP for the altruistic splitting game. Since TiΛ∗ = Λ∗ for all
i, Λ∗ is a stationary point of Dtot(·). Since Dtot(·) is jointly convex with re-
spect to Λ, a stationary point of Dtot(·) is a global optimal solution to problem
described by (22).

36

