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a b s t r a c t 

Contemporary Content Delivery Networks (CDN) handle a vast number of content items. At such a scale, 

the replication schemes require a significant amount of time to calculate and realize cache updates, and 

hence they are impractical in highly-dynamic environments. This paper introduces cluster-based repli- 

cation, whereby content items are organized in clusters according to a set of features, given by the 

cache/network management entity. Each cluster is treated as a single item with certain attributes, e.g. , 

size, popularity, etc. and it is then altogether replicated in network caches so as to minimize overall net- 

work traffic. Clustering items reduces replication complexity; hence it enables faster and more frequent 

caches updates, and it facilitates more accurate tracking of content popularity. However, clustering intro- 

duces some performance loss because replication of clusters is more coarse-grained compared to repli- 

cation of individual items. This tradeoff can be addressed through proper selection of the number and 

composition of clusters. Due to the fact that the exact optimal number of clusters cannot be derived ana- 

lytically, an efficient approximation method is proposed. Extensive numerical evaluations of time-varying 

content popularity scenarios allow to argue that the proposed approach reduces core network traffic, 

while being robust to errors in popularity estimation. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Content Delivery Networks (CDNs) currently account for 36% of

he Internet traffic [1] , and they are expected to carry more than

alf of such a traffic by 2018. In order to meet the growing de-

and for content, CDN providers deploy cache servers worldwide

hat host replicas of content. Each content request is redirected to

he closest replica rather than being served by the back-end/origin

erver. Thus, through replication, content requests are served lo-

ally and this improves both user Quality of Experience (QoE) ( i.e. ,

ccess latency) and minimizes core network traffic. 

Current content delivery services operated by large CDN

roviders like Akamai [2] , Limelight [3] and Netflix [4] can exert

normous strain on ISP networks [5] . This is mainly due to that

DN providers control both the placement of content in surrogate

aches/servers spanning different geographic locations, as well as
∗ Corresponding author. 
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.sourlas@ucl.ac.uk (V. Sourlas), carlofi@kth.se (C. Fischione), jordan@aueb.gr 

(I. Koutsopoulos). 

i  

V  

c

ttp://dx.doi.org/10.1016/j.comnet.2017.04.043 

389-1286/© 2017 Elsevier B.V. All rights reserved. 
he decision on where to serve client requests from [6] . These de-

isions are taken without knowledge of the precise network topol-

gy and traffic load, and they can result in network performance

egradation, thus affecting the experience of end users. To address

his issue, the studies in [7,8] propose the notion of an Internet

ervice Provider (ISP) CDN. An ISP deploys caches over network

odes and manages the resulting limited-capacity distributed CDN

ervice within its network. In contrast to CDN providers, ISPs have

lobal knowledge about the utilization of their network, which

auses the problem of optimal content replication in a network of

aches. 1 

Existing replication schemes rely on the assumption that the

opularity of content items is static or changes slowly. Thus, given

n estimate of content popularity, caching can be performed at

tem-level granularity. For instance, in [9] authors proposed the

reedy replication algorithm, which has a computational complex-

ty of NV 

2 C computations, where N is the number of content items,

 the number of caches/nodes and under the assumption that all
1 Note that the proposed replication schemes are not limited for ISP deployed 

aches but can be used in any network of caches. 
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Table 1 

Replica assignment computation time using the five most 

powerful computers and 10 5 parallel virtual machines ( V = 

100 , N = 10 9 , C = 0 . 1 N). 

Name Proc. Cap. ( petaflops ) Repl. time 

Tianhe-2 33.86 ≈ 7 h 

Titan 17.59 ≈ 15 h 

Sequoia 17.13 ≈ 16 h 

K Computer 10.51 ≈ 26 h 

Mira 8.586 ≈ 32 h 

10 5 cluster cores ≈ 0 . 5 · 10 −3 per core ≈ 5 h 
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2

nodes have the same storage capacity C , where C is the maximum

number of items to be stored in the cache. However, in reality con-

tent popularity changes from time to time and given the vast num-

ber of items circulated over the network and that an ISP’s network

consists of numerous nodes/caches, even such a polynomial com-

plexity algorithm cannot be applied frequently enough or is ex-

tremely costly. 2 

Consider for example a realistic content catalog of size N =
10 9 items and a domain of V = 100 nodes. We depict in Table 1

the amount of time required by the five most powerful non-

distributed computers (according to http://www.top500.org ) for

the computation of a new replication assignment according to

the greedy algorithm of [9] , when each cache/node can hold

10% of the content catalog. We also depict the performance if

the computation was parallelized over 10 5 typical Virtual Ma-

chines in a public or private cloud. We observe that even the

most powerful computer requires more than 7 hours to com-

pute a new replication assignment, whereas in the parallel ex-

ecution approach, even if we neglect the communication delay

and that the greedy algorithm is not fully parallelizable, more

than 5 hours would be required. This implies that the prob-

lem complexity is substantial, and the time required to calculate

a new cache assignment matches or even exceeds the time scales

dictated by the dynamics of content popularity . This issue is fur-

ther amplified by fragmentation of items into equally sized chunks,

which is a requirement of many replication mechanisms, such

as [11,12] . Thus, novel replication schemes of lower complexity are

required. 

Here, we propose the alternative of content aggregation through

clustering to reduce the complexity of replication and thus enabling

frequent cache updates according to popularity variations. Cluster-

ing is a machine learning technique [13] , which groups items into

clusters based on a certain similarity metric. In our context, item

clustering significantly reduces the input size (dimension) of the

replication problem. By selecting the number of clusters one may

finely tune replication complexity. A cluster of content items is

treated as a single item of certain attributes, and replication de-

cisions are taken for the whole cluster as being one item. 

Whereas existing works have demonstrated the potential of

clustering to reduce complexity [14,15] , this is the first work that

provides an efficient method to calculate the optimal number of clus-

ters . In detail, our original contributions are as follows. 

• We model the impact of computational complexity of the un-

derlying replication scheme on the overall network perfor-

mance under content popularity dynamics. 

• We characterize the tradeoff between the time required to cal-

culate a new replication configuration and the sub-optimality

of the corresponding replication decisions. 
2 Netflix, for example, performs a nightly push of the nationally (US) most popu- 

lar movies to all its regional caches [10] . 

 

c  

i  

c  
• We propose an optimization-based approach to compute the

optimal number of clusters to form, so that overall network

traffic is minimized. 

• We propose a replication-aware clustering scheme that takes

into account the spatial diversity of content popularity. 

• We compare the proposed clustering scheme against a

replication-agnostic clustering scheme, as well as various item-

level partially coordinated caching schemes, assuming different

levels of coordination (from fully coordinated to totally uncoor-

dinated). 

The rest of the paper is organized as follows. In Section 2 we

urvey related work, whereas in Section 3 , we present the sys-

em architecture and identify the impact of content popularity dy-

amics on replication decisions. In Section 4 , we introduce the

eplication-aware clustering scheme, as well as an optimization-

ased approach to compute the optimal number of clusters, and

e describe the alternative of partially-coordinated caching mech-

nisms. We evaluate numerically the performance of those alter-

atives for realistic network topologies and traffic data, and we

emonstrate that clustering enhances the robustness of replication

o content popularity variations in Section 5 . Finally, Section 6 con-

ludes our study. 

. Related work 

.1. Replication in static environments 

The problem of optimal content replication and placement in

 network of distributed caches has received significant interest

ately [11,16] . It is an NP-hard problem [9,17] , and as such, approx-

mation algorithms of polynomial complexity have been proposed.

n [18] , authors model the cache assignment problem as a dis-

ributed selfish replication (DSR) game in the context of distributed

eplication groups (DRG). Under the DRG abstraction, nodes uti-

ize their caches to replicate information items and make them

vailable to local and remote users with the objective of minimiz-

ng the overall network traffic. The pairwise distance of the nodes

n [18] (transfer cost between any two nodes) is assumed to be the

ame and thus no network characteristics are taken into account.

n the context of DRG and under the same distance assumption

f [18] , a 2-approximation cache management algorithm is pre-

ented in [19] . In [11] the authors develop a cache management

lgorithm for maximizing the traffic volume served by the caches

nd hence for minimizing network bandwidth cost. They focus on

 set of distributed caches, either connected directly, or via a par-

nt node, and they formulate the content placement problem as

 linear program to benchmark the globally optimal performance.

n the popular area of information-centric networks, a set of of-

ine cache planning and replica assignment algorithms are pro-

osed in [20] , whereas in [21] a distributed cache management ar-

hitecture is presented that enables dynamic reassignment of con-

ent items to caches in order to minimize overall network traffic. 

The above mentioned replication schemes rely on the assump-

ion that the popularity of content items is either static or changes

lowly. In reality, content popularity changes significantly over

ime [22–24] and the design of a content replication scheme that

pdates caches following closely those changes is a challenging

anagement task, since replication is a time-consuming process. 

.2. Reducing the complexity of replication process 

In order to reduce the computational complexity of the repli-

ation process, partially coordinated replication was introduced

n [25] . Nodes use a fraction of their cache capacity to store

ontent in a coordinated manner (CDN-like replication) and the

http://www.top500.org
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Fig. 1. Architecture of the ISP-managed Content Delivery Network. 
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3 This assumption is made only for ease of presentation. Exactly the same analy- 

sis holds when more servers are present. 
emaining capacity is used to cache the locally most popular con-

ent. The authors in [25] provide a method to optimally provi-

ion the storage capacity to be used for coordinated caching in

ach node, so as to balance the tradeoff between network perfor-

ance and the provisioning/computational cost. Here, in order to

educe the complexity of the underlying replication schemes, we

ollow a totally different approach by aggregating content through

lustering. 

Clustering of web content based on popularity and replication

t cluster-level was first considered in [14] , where the validity of

uch an approach was demonstrated through extensive numeri-

al evaluations of existing clustering and replication algorithms. In

articular, the k -split algorithm of [26] was used to group together

imilar contents so as to minimize the maximum intra-cluster dis-

ance. In [27] , the authors use clustering to reduce the complex-

ty of the cache placement problem. Clustering for replication pur-

oses has also been considered in the context of grid computing

n [28] . Items are clustered together whenever they are frequently

ccessed by the same process within a small period of time. The

roblem of clustering is cast as a graph partition problem, and

 greedy algorithm is proposed. Once the clusters have been de-

ermined, the problem is posed as an integer linear programming

ILP), which is solved numerically. 

In [29] authors apply clustering to partition a network domain

n sub-domains in an attempt to enable efficient hash routing tech-

iques in the area of Information-Centric Networks. The aforemen-

ioned approaches are complementary to this work, given that our

cheme relies on aggregating content items, neither users nor net-

ork nodes. 

.3. Benefits and risks of clustering for replication purposes 

In general, clustering of content based on certain similarity

etrics leads to a more succinct but less accurate representation of

he system state compared to the fine-grained but time-consuming

tem-level replication. On the other hand, by reducing the prob-

em size and thus its computational requirements, content repli-

ation at cluster-level can be applied more often, and hence con-

ent popularity dynamics can be tracked more accurately. Particu-

arly, using a larger number of clusters ( i.e. , clusters with a small

umber of items) ensures that only very similar contents are clus-

ered together, the average cluster size and its variance become

maller, and hence the loss of treating clusters as a single item is

educed. However, a large number of clusters leads to a more com-

lex optimization problem with larger computational complexity,

nd hence a less accurate tracking of content popularity dynamics.

hus, deriving the optimal clusters in terms of size and contents is

 challenging task that needs to address this inherent tradeoff. 

A first approach of clustered content replication for hierarchical

ache networks was presented in [15] , where cluster-level replica-

ion was compared against traditional replication schemes. How-

ver, no methodology to compute the optimal number of clus-

ers was provided, which is the main contribution of this article.

esides, similarly to [18] , we assumed in [15] that the pairwise

istance of the nodes is the same, whereas here a generic net-

ork topology is considered. Additionally, in this work, the actual

omputational complexity of the replication scheme (at item or

luster-level) and the temporal and spatial variations of the content

opularity are incorporated in the decision making. The proposed

luster-level replication scheme is compared against a broader set

f item-level replication schemes (partially coordinated caching

chemes) and the k -split clustering scheme presented in [14] . The

 -split clustering scheme is replication-agnostic, and its objective

uring the formation of clusters is the selection of a set of repre-

entatives so that a loss function, e.g. , average distance of clustered

tems from the closest representative, is minimized. 
. System model and problem formulation 

.1. System model 

We consider the interplay of content clustering and replication

n a network of arbitrary topology, as the one depicted in Fig. 1 ,

hich can be represented as a graph G = (V, E ) . Let V denote the

et of cache enabled routers/nodes and E the set of communication

inks connecting them. We use the calligraphic letters to denote

ets and capitals for cardinality ( e.g. , |V| = V ). 

We are interested in the network of a single administrative do-

ain, where a set of routers with storage capabilities serve re-

uests for content from users. Node v ro corresponds to the root

ontent server where all content items are stored. The root con-

ent server is an abstraction of multiple origin servers. 3 Addition-

lly, we denote by v eg the egress node through which a request is

orwarded to the origin server that lies outside the administrative

omain. We also assume that all nodes use the same egress node

o access the root server, and each node v ∈ V has a storage capac-

ty of C v bytes. 

Let N denote a given fixed set of N content items that have

o be delivered over the network, and let s n the size (in bits) of

tem n . Content requests are generated by users attached to net-

ork nodes according to their popularity. Access requests that can-

ot be satisfied locally trigger the transfer of the requested item

rom a remote node or from the root server. Throughout the pa-

er we assume that the underlying content delivery mechanism

lways directs requests to the closest replica according to a cost

etric. Thus, a request for item n generated at node i , incurs an

ggregate traffic cost equal to s n · h ij , if served by node j . Param-

ter h ij captures the network cost per bit of transferred content

rom node j to node i � = j , possibly in multihop fashion. In this

ork, we consider core network traffic as the performance metric

f interest and hence h ij captures the per bit required amount of

etwork resources according to the shortest path from node j to

ode i . Latency is a second important aspect, which as depicted in

ig. 1 depends on where the content is retrieved from. 

A summary of the system model notations as well as the ad-

itional notations used in the Evaluation section is provided in

able 2 . 
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Table 2 

Summary of the system model notations. 

C v Storage capacity of cache v . 

E Set of E links interconnecting the caches. 

M Set of M clusters. 

N Set of N content items. 

R Set of replication algorithms ( ρ ∈ R a given alg.). 

S Size of a cluster in number of content items. 

T rep ( ρ) computations and realization time of replication alg. ρ . 

T obs duration of the observation period. 

V Set of V cache enabled nodes. 

a Popularity alteration factor. 

c Proportion of the coordinated caching [25] . 

d acc Delay between a user and the network node that is attached. 

d net Delay between two peer nodes in the network. 

d srv Delay between egress node and root content server. 

h ij Per bit traffic cost for fetching an item from cache j to node i . 

r n v Total number of requests for item n at node v . 

s n Size in bits of item n . 

t fraction of the replication computation time ( i.e. , t = T rep (ρ) /T obs ). 

v ro Root content server. 

v eg Egress node towards content server. 

z Exponent of popularity distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The two phases of content replication. ρ2 is a replication policy of higher 

complexity that guarantees lower network traffic ( e.g. , algorithm presented in [12] ) 

than replication policy ρ1 ( e.g. , greedy algorithm in [9] ). D (0) and D ( ρ) are the per 

unit of time overall network traffic given by Eqs. (1) and (2) accordingly. 

i  

n  

i  

g  

a  

s  

A  

t  

b  

d

 

t  

t  

v  

i  

a  

u

N  

t  

r  

b  

u

 

r  

a  

a  

t  

r  

L  

o  

u  

t  

m  

p  

w  

h  

b

 

t  

T  

i  

s  

l  

c  

d  
3.2. Cache management system architecture 

In this section, we briefly present a cache management archi-

tecture which, given a high-level optimization objective decides

on the placement of the item/clu-sters in the caches of the net-

work. We adopt a system architecture similar to the one applied

in CDNs. In particular, we assume that distributed cache man-

agers are assigned at each cache node of the network. Each cache

manager monitors and reports content popularity fluctuations of

the managed node to a central entity. The latter is responsible

for acquiring all the necessary information such as request rates,

popularity/locality of information items, current cache configura-

tions and network topology, and it performs the aggregation of the

items in clusters and the computation of placement of items at

nodes/caches of the network. 

Alternatively in a less coordinated approach ( i.e. , [25] ), man-

agers could base their caching decisions only on a local view of

the users demand, in an attempt to minimize the communication

and computational complexity by caching the locally most popu-

lar content. Generally, the underlying cache management system

architecture could be designed according to the used replication

algorithm and vice versa , resulting a centralized architecture when

traditional off-line replication algorithms are applied, or to a dis-

tributed autonomic one when approaches like the ones presented

in [21] are used. 

3.3. Impact of content popularity dynamics on replication 

Content popularity captures the expected number of requests

within a given period. Let r n v denote the estimated aggregate in-

coming request rate (in requests per unit of time) at node v for

item n . Thus, vector r v = { r 1 v , . . . , r 
N 
v } is an estimate of the ac-

tual request rate based on observed, historical content access data

within an appropriately chosen time window. This estimate is used

as a prediction for the future number of requests addressed to each

node. This estimation can be performed with an approach simi-

lar to [30] , using an exponential moving average function in each

measurement window, thus enabling the distributed managers de-

scribed previously to monitor content popularity dynamics. This

prediction could be enhanced with information from other sources

like other ISPs, as well as CDNI [31] . 

We approximate item popularity through a Zipf distribution of

exponent z , since it has been shown that file popularity in the In-

ternet follows this distribution [22,32–34] . Generally, the popular-
ty of each content item may differ from place to place, a phe-

omenon that is referred to as locality of interest [35] ( spatial skew

n [36] ). In our model, this is captured through a localized request

eneration model, where aggregate request pattern r v is different

cross regions represented by nodes v ∈ V in the network. We as-

ume V different regions, each served by a network router/node.

ll regions are characterized by the same value for the Zipf dis-

ribution exponent which captures the global popularity of items,

ut in each region the ranking/order of the items within the Zipf

istribution is different, which captures the locality of interest. 

Content popularity is changing over time [22–24] , and based on

he request rates observed within a time window of duration T obs ,

he manager/central entity of the network may detect substantial

ariations in popularity, say at time T 0 = 0 . We model this mod-

fication of request vectors through a popularity alteration factor

 in the sense that the ranking of the items within the Zipf pop-

larity distribution at each node is altered by a factor a; i.e., a ·
 items have a different ranking at T 0 than the most recent one

hat was used to derive the current replication decision. Then, a

eassignment of items on the cache nodes of the network has to

e applied so as to minimize the expected network traffic for the

pcoming period. 

A key decision concerns the selection of the replication algo-

ithm/scheme ρ ∈ R , where R is the set of possible replication

lgorithms. In the end, any replication algorithm ρ ∈ R results in

 feasible replication decision, i.e. , a placement of items in caches

hat respects cache capacity constraints. However, replication algo-

ithms are characterized by different complexity and performance.

et computation and realization of the new replication decision

f algorithm ρ , requires an amount of time equal to T rep ( ρ) time

nits. Then, if we assume that the content popularity is the same

hroughout an “observation period” T obs , we may define the two

ain phases depicted in Fig. 2 . Any request generated in the first

hase will be served according to the current replica configuration,

hich is based on outdated information. Once the cache contents

ave been updated, in the second phase all the new requests will

e served accordingly. 

In this context, the optimal content replication strategy has

o be decided so as to minimize the overall network traffic over

 obs . Let A 

n −
j 

denote the set of nodes retrieving item n through

ts replica at node j according to the initial (outdated) cache as-

ignment. We call this phase as pre-cache update period. Also,

et A 

n + 
j 

(ρ) be the corresponding set according to updated cache

ontents determined by ρ . We call this phase as post-cache up-

ate period. Then, the overall network traffic during the first phase
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ccording to strategy ρ is given by 

 

−(ρ) = T rep (ρ) D (0) = T rep (ρ) 
N ∑ 

n =1 

∑ 

j∈V 

∑ 

i ∈A n −
j 

r n i s n h i j . (1)

otice that the duration of this first period/phase, is determined by

he replication algorithm. In a similar way, we define the expected

verall network traffic due to requests generated within the second

hase as, 

 

+ (ρ) = (T obs − T rep (ρ)) D 

+ (ρ) 

= (T obs − T rep (ρ)) 
N ∑ 

n =1 

∑ 

j∈V 

∑ 

i ∈A n + 
j 

(ρ) 

r n i s n h i j , (2) 

here D (0) and D 

+ (ρ) are the total network traffic per unit of time

efore and after the cache update respectively. Our objective is to

inimize the overall core network traffic, defined as L ( ρ), which

akes into account the delayed cache updates due to the computa-

ional complexity of the underlying replication scheme ρ . Formally,

his can be expressed as the following optimization problem 

in 

ρ∈R 

L (ρ) = T −(ρ) + T + (ρ) . (3)

 ( ·) corresponds to the total area of the rectangles depicted in

ig. 2 , where the area of each phase is given by Eqs. (1) and (2) .

ntuitively the optimal replication of content items would mini-

ize the overall network traffic during the second phase, i.e. , the

eight of the second rectangle. However, given that content repli-

ation is an NP-hard problem [9] , a significant amount of time T rep 

ould be required to calculate the optimal solution and update

aches, increasing hence the period that caches remain outdated

 i.e. , duration of pre-cache phase). This tradeoff between perfor-

ance ( i.e. , network traffic) and complexity (duration of pre-cache

eriod) can be addressed through the selection of the replication

lgorithm/scheme. 

Instead of exploring the performance of different replication

euristic algorithms, we propose alternative approaches that ex-

licitly address the aforementioned complexity-optimality tradeoff

n a managed and controllable manner. In particular, we propose

chemes that reduce the dimension of the problem by controlling

he number of clusters M , which determines the computational

oad and hence the relative size of the pre- and post-cache update

ntervals. Thus, in our clustering setting all the above formulas still

old, but we need to replace ρ by M . 

.4. Replication algorithm 

We assume that the 2-approximation greedy placement algo-

ithm of [9] and [20] is used by the network management entity

s the replica placement algorithm. The algorithm initially assumes

mpty caches, and at each iteration it replicates the item to the

ache that yields the maximum traffic gain. In particular, in the

rst round the algorithm evaluates the traffic gain if each of the

 items is cached in each of the V caches. Out of the NV available

ptions, the item-cache pair that yields the maximum traffic gain

s selected. Given the previous step decision, in the second round,

n additional item-cache pair has to be selected, namely the one

hat yields the maximum core traffic savings. The greedy algorithm

s repeated until all the available storage capacity has been used.

he greedy replication algorithm has a computational complexity

f N V 
∑ V 

v =1 C v = N V 2 C computations, assuming that all nodes have

he same storage capacity ( C v = C, ∀ v ∈ V). 

. Content replication schemes of tunable complexity 

In this section, we present two alternative approaches to tackle

he optimization problem in Eq. (3) . In particular, we describe how
ontent clustering and partially coordinated replication enable a

ne-grained control of the computational complexity of replication

nd eventually of network traffic. 

.1. Cluster-level replication 

Clustering of N content items into M clusters ( i.e. , groups), with

 � N , facilitates replication at cluster-level, which can substan-

ially reduce the dimensionality of the replication problem and

onsequently the replication complexity. The formation of content

lusters results in suboptimal replication decisions, when com-

ared to item-level replication, since content items in a cluster are

reated as a single item when replicated. Next, we present the two

auses of performance loss as compared to item-level replication. 

• Diversity loss: Miss-classification of items due to spatial vari-

ation of popularity and coarse-grained replication. This loss

results from two main characteristics of the specific application

scenario, namely spatial variation of content popularity [35,36] ,

and the diversity of the traffic cost h ij . Content clustering is per-

formed according to the content popularity r v across all caches.

Thus, any two items assigned to the same cluster should always

be cached together. There may be places (caches) though, that

it would be preferable to split a cluster, so as to cache only a

part of it along with other content items. In order to demon-

strate the impact of spatial variation of popularity, consider a

set of 3 items {1, 2, 3} and two locations i and j with corre-

sponding content request rates r 1 
i 

> r 2 
i 

> r 3 
i 

and r 1 
j 

> r 3 
j 

> r 2 
j 
. If

r 1 
i 

= r 1 
j 
, r 2 

i 
− r 3 

i 
> r 3 

j 
− r 2 

j 
, and all traffic costs are equal, cluster

{1, 2} would be formed and stored in both caches. Instead, in

item-level caching items 1,2 would be cached at cache i and

items 1,3 at cache j . The same phenomenon could arise un-

der unequal costs, even if content request patterns are identical

from place to place. Diversity loss is generally decreasing in the

number of clusters M . 

• Slack loss: Non-integral multiple of cluster size. This loss

arises when part of the capacity of a cache remains unallocated,

since no uncached cluster fits there. If item-level caching were

applied instead, a subset of the items of an uncached cluster

would have been cached. The unallocated capacity at cache j

resulting from cluster-level caching, is upper-bounded by the

maximum size of a cluster. In particular, a tighter bound holds,

namely unallocated capacity is smaller than the smallest un-

cached cluster. The corresponding loss is equal to the traffic

cost of retrieving those items from the closest replica. This loss

could be further reduced by assuming partial cluster caching

(caching a portion of a cluster), but this is left for future in-

vestigation. Such a scheme would require additional effort for

the computation of the right cluster(s) that should be partially

cached. 

.1.1. Replication-aware clustering 

The problem of clustering a set of N items in M clusters is an

nteger programming one and it is NP-hard [37] . Here, we derive

 low-complexity clustering scheme that addresses the aforemen-

ioned replication-related issues. 

In order to minimize the unused capacity ( i.e. , slack loss), we

uggest that equally sized clusters should be formed. In addition,

e select cluster size S = 

∑ 

n ∈N s n /M to be a common divisor of all

ache capacities, which translates into the following set of addi-

ional constraints 

C v 

S 
∈ Z 

+ (the set of positive integers) ∀ v ∈ V . (4)

his ensures that the resulting clusters fit perfectly to caches. Any

pproximate divisor can also be used, resulting only to a lim-

ted amount of storage being unexploited. Thus, the set of feasible
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Fig. 3. The performance of the cluster-level replication scheme for a given network 

setup is approximated by the power function 77 M 

−0 . 062 . 
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4 Similar approximations can be applied for other popularity distributions, e.g. , 

exponential. 
numbers of clusters, M is restricted. It has been shown that in-

troducing specific constraints in cluster cardinality improves per-

formance of heuristic clustering approaches [38,39] . Our extensive

numerical evaluations verify that this holds in our scenario as well.

On the other hand, increased traffic stems from cache misses,

due to content aggregation ( i.e. , diversity loss). This, is an inherent

characteristic of clustering and hence cannot be avoided. We de-

vise a clustering approach that for a given number of clusters M

pursues to minimize the corresponding performance loss. 

Initially, a representative similarity index I (metric) has to be

derived to drive clustering decisions. In order to address the spatial

variations of request rates r v we calculate content similarity of any

two items n 1 and n 2 according to the inverse of pairwise Euclidean

distance of their overall request rate vectors, i.e. , 

I eucl (n 1 , n 2 ) = 

( √ ∑ 

v ∈V 

(
r n 1 v − r n 2 v 

)2 

) −1 

. (5)

Euclidean distance of content popularity transforms the Euclidean

space of popularity into a metric space. The Euclidean distance of

the popularity vectors quantifies how close (similar) are the spatial

request patterns of two items over the network caches. This metric

can be then used to construct the clusters according to the greedy

clustering scheme presented in Appendix A . Initially, a cluster that

contains the two most similar items is formed. Then, more items

are added to the cluster one by one until the selected size of clus-

ter is reached. At each iteration of the algorithm, the most similar

item to those already in the cluster is chosen to be included in it.

Once an item is allocated to a cluster, it is excluded from the can-

didate items set. Thus, clusters are created and filled until all items

have been assigned to a cluster. In the Evaluation section we refer

to this clustering scheme as Euclidean distance clustering . 

4.1.2. Approximation of the optimal number of clusters 

From the discussion above, it becomes clear that clustering in-

troduces a new degree of freedom to tackle Eq. (3) , namely the

number of clusters M , identically to replication strategy ρ . Param-

eter M enables us to trade between (i) the time required to cal-

culate a cache assignment, which determines the pre-cache up-

date interval in Eq. (1) and (ii) increased traffic load due to sub-

optimal placement of content according to Eq. (2) . Next, we pro-

pose a methodology to estimate the optimal number of clusters,

given that the proposed clustering scheme and greedy replication

are applied. This requires deriving a closed form expression of

L (M) = T −(M) + T + (M) . 

T rep in Eq. (1) is a function of M . For equal clusters of size S

the computational complexity of cluster-level replication is MV 

2 C / S

computations, which is smaller by a factor of (1/ S ) 2 compared to

item-level greedy replication [9] . Given also that S = N/M we have,

T rep (M) = γ
V 

2 C 

N 

M 

2 , (6)

where multiplicative factor γ captures the average time required

for the execution of a single replication computation and can be

easily calculated for a specific system. For reference consider the

values presented in Table 1 , where γ is the time that each sys-

tem requires for the computation of a single cluster assignment

( i.e. , usually a multiple of the inverse processing capacity). Notice

that given the placement of items in the caches and the new re-

quest rate vector, the total network traffic per unit of time before

the cache update, D (0), can be numerically calculated and does not

depend on M . Eventually T −(M) of Eq. (1) can be expressed as a

function of the number of clusters M ( i.e. , due to T rep ). 

Similarly, in Eq. (2) post-cache period network traffic is a func-

tion of M, i.e. , T + (M) = (T obs − T rep (M )) D 

+ (M ) . However, analyti-

cally calculating the exact impact of M on D 

+ (M) (the summation
erm of Eq. (2) ) would require solving the replication problem for

ifferent values of M and selecting the one that minimizes Eq. (3) .

his approach is impractical, and an estimate of the overall net-

ork traffic T + (M) under clustered replication has to be derived.

ince slack loss can be easily avoided be proper selection of clus-

er size, loss is introduced only due to diversity. Then, given that

ontent popularity follows a Zipf distribution, the total traffic per

nit of time over M , D 

+ (M) , can be approximated by a power func-

ion, i.e. , 

 

+ (M) = βM 

−λ . (7)

his approximation comes naturally since as Eq. (2) suggests

 

+ (M) is a linear combination of request rates r v which follow a

ower law. 4 It is also supported by our extensive numerical results.

n the example of Fig. 3 , we depict a simulated instance and its ap-

roximation power function. However, the exact values of β and λ
epend on numerous system parameters. 

A straightforward way to approximate D 

+ (M) is through its

valuation in at least two points. One such point can be derived

y solving the cluster-level replication problem for a small feasi-

le value of M , say M 1 . For example, we may select the cluster

ize so that each cache can store only one cluster S = C. An addi-

ional point that is easy to calculate corresponds to the solution

f the Linear Programming (LP) relaxation of the item-level repli-

ation problem which provides a lower bound of T + (N) ( i.e. , each

luster consists of one item) [11,16] or the outcome of any of the

roposed heuristic item-level replication algorithms [17] . Thus, β
nd λ can be calculated as the numerical solution of the following

ystem of equations 

M 

−λ
1 = D 

+ (M 1 ) , (8)

N 

−λ = D 

+ (N) . (9)

If additional points can be derived, curve fitting could be ap-

lied instead, by using any of the known interpolation mechanisms

resented in [40] . Notice that the schemes in [40] are also appli-

able when the popularity distribution is not even exponential. Es-

imation of those parameters could be also assisted by historical

ata, which is beyond the scope of this work. 

Given the derived expressions of Eqs. (6) and (7) , one may nu-

erically solve the following unconstrained optimization problem

o approximate the optimal number of clusters 
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Fig. 4. Evolution of core network traffic as content popularity changes over differ- 

ent observation periods: Cluster-level vs . item-level replication. 

Table 3 

Evaluated replication schemes. 

Replication scheme Comments 

Euclidean distance clustering Proposed cluster-level replication Section 4.1.1 

k -split clustering Cluster-level repl. using clustering alg. from [14] 

Item-level Greedy Replication with c = 1 in Section 4.2 

Coordinated 25% Greedy Replication with c = 0 . 25 in Section 4.2 

Coordinated 50% Greedy Replication with c = 0 . 5 in Section 4.2 

Coordinated 75% Greedy Replication with c = 0 . 75 in Section 4.2 

Uncoordinated Cache the locally most popular items ( i.e. , LFU) 

c  
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M 

L (M) = T rep (M) D (0) + (T obs − T rep (M)) D 

+ (M) 

= γ
V 

2 C 

N 

M 

2 D (0) + (T obs − γ
V 

2 C 

N 

M 

2 ) βM 

−λ . (10) 

ince the derived solution may be non-integer, rounding to the

earest feasible M has to be applied. 

Notice that an alternative approach to calculate the optimal

umber of clusters would be to perform a binary search over the

et of feasible values according to Eq. (4) . By exploiting our knowl-

dge on T rep ( M ) and T + (M) , a nearly optimum value of M can be

erived by calculating only a limited number of cluster-level repli-

ation instances, typically three to five instances. 

.2. Partially coordinated content replication 

Another method to reduce the computational complexity of

he greedy replica placement algorithm is to apply partially-

oordinated replication. In this case, nodes use only a fraction 0

c ≤ 1 of their cache capacity to store content in a coordinated

anner ( i.e. , item-level replication), and the rest of the capacity is

sed to cache the locally most popular items. This model captures

he fact that user preferences in a particular region is likely to be a

ix of globally-popular content and regionally-popular content, as

hown in [41] . Two extreme cases of interest are the fully coordi-

ated item-level replication for c = 1 , and the uncoordinated repli-

ation for c = 0 , where each node caches the locally most popular

tems regardless of the caching decisions of the other nodes. In the

atter case, the computational complexity is negligible, since each

ode independently adapts to the new request pattern by updating

ts cache with the locally most popular items. Note also that this

ase is also known as Least Frequently Used, LFU (within a given

ime window) replacement strategy, usually employed on push-

ased caching schemes. 

Let each node v contribute c · C v of its storage capacity for co-

rdinated replication according to the item-level greedy replica-

ion algorithm. Coordination level c linearly reduces computational

omplexity of replication, leading to a smaller scale problem in-

tance of controllable size. Indicatively, for c = 0 . 25 the computa-

ional complexity/delay assuming the greedy replication algorithm

s 1 − c = 75% smaller than assuming fully coordinated replication. 

A similar approach was introduced in [25] , in the con-

ext of Information-Centric Networking. In contrast to our work,

n [25] coordination targets the selection of where each item

hould be uniquely cached (no replication) with the objective

f minimizing latency and under the assumption that the intra-

omain delay between peer caches is the same for every pair of

odes. 

. Numerical evaluation 

.1. Evaluation setup 

In this section, we use a custom-built discrete event simulator

o evaluate the performance of the proposed replication scheme,

amely the cluster-level replication “Euclidean dist. clustering” pre-

ented in Section 4.1.1 , along with the partial coordinated replica-

ion scheme, for c ∈ {0, 0.25, 0.5, 0.75, 1}, and the generic clus-

ering scheme “k-split clustering” proposed in [14] . The k -split al-

orithm clusters the content items into k clusters and its objec-

ive is to minimize the maximum intra-cluster distance, but it is

eplication-agnostic. Table 3 summarizes the replication schemes

sed in the Evaluation section. 

Throughout this section, we assume that all items are of equal

ize and all nodes have the same storage capacity ( C v = C, ∀ v ∈ V).

e normalize the size of each item to one unit with respect to

ode’s storage capacity ( s n = s = 1 , ∀ n ∈ N ) and hence each node
an hold up to C different unit sized items. Note that fragmenta-

ion of items into equally sized chunks is a requirement of many

eplication mechanisms, e.g. , [11,12] . Content segmentation is also

resent in various content distribution systems, such as BitTor-

ent, which implies that our equally sized items assumption is rea-

onable. Regarding the network topology, we use a topology with

 = 50 nodes from the Internet Topology Zoo dataset [42] . 

Although our objective here is to minimize the core network

raffic load, user-perceived latency is also an important perfor-

ance metric. For this reason, we need also to capture the in-

urred latency, which depends on which cache hosts each re-

uested item. We denote by d ij the latency between two neigh-

ouring nodes i, j ∈ V and (i, j) ∈ E . Typical latency values are ≈
0 ms for d acc (see Fig. 1 ) in cable and ADSL access networks [25] .

he latency between caches in the same administrative domain,

 net , typically ranges from a few up to 50 ms more than d acc , de-

ending on the geographical coverage of the network. Finally, d srv 

ypically ranges from 50 − 100 ms. Throughout our simulations, we

se the following values: 

 i j = 

{ 

d acc = 10 ms , 
d net ∈ [1 , 50] ms , 
d srv = 100 ms . 

We also assume that at each node a total of 100 requests per

econd are generated. Thus, the request rate for each item at each

ode varies from 0 − 100 reqs/sec depending on item popular-

ty and ranking. We consider a scenario where N = 5 , 0 0 0 content

tems have to be replicated (and clustered). Recent measurement-

ased studies indicate that a small number of items often account

or a large portion of traffic, especially for users located in certain

reas ( e.g. , a university campus [43] ), or embedded in a social net-

ork [44] . This advocates that a small portion of the population

f the items available in the network is actually requested. For in-

tance in [22] authors found through the analysis of a video on

emand dataset that the 10% of the most popular videos attracted

ore than 80% of the views. Additionally, the use of Zipf distribu-

ions for the items’ popularity (also found in the dataset of [22] )

mplies that 5,0 0 0 items may account for the ≈ 90% of the total

emand considering an information space of size of 10 6 items ap-
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Fig. 5. The impact of the total number of clusters formed in the performance of the examined schemes. 
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proximately. On these grounds, our choice for the size of the items’

population and their popularity distribution can be considered fair.

The rest of the items are served directly from the root content

server and are not considered in the replication and the cluster-

ing process, as suggested in [22] . 

For the evaluation of the proposed replication schemes, we ini-

tially assume that for a period of 12 hours, the request pattern

(Zipf exponent and ranking) at each node is unchanged or differ-

ently the manager of the network performs the estimation of re-

quest patterns in 12 hours intervals. According to the observed re-

quest pattern each one of the examined replication schemes as-

signs replicas to the caches of the network. We call this period as

the “initialization period”. At the end of this period we assume that

the ranking of the items at each node has changed by a popular-

ity alteration factor a . Then, at the beginning of the “observation

period” T obs , which is also set equal to 12 hours, each one of the

examined replication schemes initializes the reassignment of the

items in the caches. 

Let t = T rep /T obs denote the fraction of the time for the compu-

tation of the new replication assignment over the whole observa-

tion time. We also refer to t as the replica computation latency . The

computation latency t used in the following experiments refers to

the item-level greedy replication scheme when the storage capac-

ity of each node is 10% of the total item population. Accordingly,

the computation latency of the rest of the examined replication

schemes corresponds to a fraction of factor t (see Section 4.1.2 for

the cluster-based replication schemes and Section 4.2 for the par-

tially coordinated replication schemes). Note here that the compu-

tation latency used throughout the evaluation section is a normal-

ized value based on the computational times presented in Table 1 ,

and not on the actual used values for the items’ population used
in the simulator. 
t  
Our evaluation is based on the following metrics: 

• The Average Link Stress (in items/sec) is the mean number of

items that traverse each link of the network per second. This is

our main metric for the core network traffic load. 

• The Cache Hit Ratio is the ratio of the content requests that

were served by the cache network, i.e. , they found the re-

quested item cached within the domain and not at the root

server, over the total number of requests issued during the ob-

servation period. 

• The Average Retrieval Latency (in ms) is the mean latency for

the retrieval of an item by a user during the observation period

and is a user perceived QoS metric. 

• The Maximum Link Stress (in items/sec) is the maximum num-

ber of items that traverse the most constrained/congested link

of the network. This metric along with the Average Link Stress

metric are indicative of the load balancing capabilities of each

scheme. 

For better readability of the results, we also depict the Link

tress gain/loss against item-level replication , which captures the

ain or the loss of a specific replication scheme over the bench-

ark item-level replication scheme. 

In cluster-level replication, the clustering process requires a non

egligible amount of offline computations. This implies that clus-

ering is a process that should be executed in a different time scale

ompared to the replication process, since otherwise it might com-

romise the low complexity computation process of the new con-

ent replication scheme. Here, we assume that the aggregation of

tems into clusters occurs only once and never changes both during

he initialization and the observation periods. We additionally as-

ume, that the replication process is executed at the end of the ini-

ialization period, based on the content popularity observed by the
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Fig. 6. The impact of the cache capacity of each network router/node in the performance of the examined schemes. 
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o  
ache managers during this period, whereas clustering was done

ased on the popularity observed at some time before the ini-

ialization period and does not change afterwards. This allows the

luster-based replication schemes to compute the new replica as-

ignment in a very small fraction of time compared to the item-

evel schemes. 

We evaluate the potential of this approach in Fig. 4 . Whereas

tem-level replication spends a significant amount of time to cal-

ulate and update cache contents ( i.e. , T rep (N) = 0 . 25 T obs ), in our

luster-based approach the updates are very fast( i.e. , T rep (M) =
 . 01 T obs ). Thus, although the updated cache configuration results

o higher traffic in the network, if compared to item-level replica-

ion, the average traffic over time is more than 10% lower. 

.2. Impact of number of clusters 

Fig. 5 depicts the impact of the number of clusters M on the

erformance of the considered schemes. Naturally, only the newly

roposed clustering scheme and the k -split algorithm are affected

y the number of clusters. The rest of the schemes are depicted

or comparison purposes, since all of them perform replication at

tem-level and not at cluster-level. 

From the comparison of the two clustering schemes ( Fig. 5 (b)),

e observe that the newly proposed replication-aware Euclidean

lustering scheme, with equally sized clusters, performs between

2% and 52% better than the k -split clustering algorithm [14] , de-

ending on the size of the formed clusters. The k -split algorithm,

espite having the same complexity with the proposed Euclidean

istance clustering algorithm, generally forms clusters of different

izes that increases the Slack loss effect described in Section 4.1 .

herefore, even when it manages to replicate all clusters within the

omain (for the default cache size at each router), there are items

hat should be fetched from distant routers, which increases the

etrieval latency ( Fig. 5 (c)) and puts increased stress at the links of

he network ( Fig. 5 (b) and (d)). 

From Fig. 5 (a) we also observe, that an increase in the number

f clusters decreases the possible losses due to miss-classification
f the items that arise from their spatial variations. On the other

and, increasing the number of clusters increases the complex-

ty for the computation of the new replica assignments. There-

ore, based on the observed network dynamics a network man-

ger should weight the pros and cons of the selected clustering

evel before applying it to the network, e.g. , according to the ap-

roach provided in Section 4.1.2 . In terms of network traffic, we

bserve that for any option above M = 200 clusters the proposed

luster-based replication scheme outperforms item-level replica-

ion ( Fig. 5 (b)). The findings regarding average latency are similar.

or example, an increase in the number of clusters from M = 50

o M = 250 decreases the average latency by 11%, whereas an in-

rease from M = 10 0 0 to M = 250 0 decreases the latency only by

% ( Fig. 5 (c)). 

For the system parameters used in this experiment the Cache

it Ratio of every scheme is equal to 100%. This means, that even

he k -split algorithm manages to replicate all items within the

aches of the domain. Only for smaller cache capacities the cache

it ratio of all the replication schemes is less than 100%, as we

how in the next section. 

From Fig. 5 it is obvious that a network manager could also ap-

ly a hierarchical clustering and replication scheme. Starting from

n initial number of clusters, we may split them in each iteration

ntil we reach a core network traffic that is smaller than a given

hreshold or than a competitive replication scheme. For instance,

ased on the selected default values for the various system pa-

ameters, we observe that a number of M = 10 0 0 clusters is suf-

cient for our clustering scheme to significantly outperform item-

evel replication by almost 10% regarding Avg. Link Stress. We use

his as the default value for the number of clusters in the rest of

he Evaluation section. 

.3. Impact of cache capacity 

Fig. 6 depicts the impact of available cache capacity, expressed

s the fraction of content items that can be stored in the cache

f a node. We observe that for the selected number of clusters
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Fig. 7. The impact of the computation latency t ( i.e. , replication computational complexity) in the performance of the examined schemes. 
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( i.e. , M = 10 0 0 ) the proposed cluster-based replication performs

better than item-level for almost all the evaluated cache sizes

( Fig. 6 (a)). Of course when the storage capacity of each node is

less than 10% of the item population, item-level replication still

performs considerably well. In those scenarios, the incurred com-

putation latency is not significant and any losses during the execu-

tion of the item-level replication algorithm ( i.e., T rep interval) are

reversible within the remaining period ((1 − t) T obs ) . On the other

hand, when the storage capacity is larger than 10% cluster-based

replication achieves up to 45% reduced traffic due to its consider-

ably lower complexity. Notice that this occurs despite the possi-

ble clustering losses described in Section 4.1 . Additionally, the par-

tially coordinated schemes that compute the replica assignment in

a fraction of time compared to item-level scheme, perform up to

30% better when the storage capacity of each node is large enough

( Fig. 6 (a) and (b)). 

In Fig. 6 (c), we depict the cache hit performance, i.e. , the por-

tion of requests served by any of the caches, and not by the ori-

gin server. We observe that when C / N ≥ 10% all the examined

algorithms serve requested items inside the domain, eliminating

thus the access to the origin server and its incurred delay. In those

cases only the latency between the client issuing the request and

the closest router/node holding a replica of the requested item is

apparent. Therefore, their performance difference lies on the effi-

ciency of their replication scheme and the impact of the compu-

tation latency in its realization. Since in the rest of the performed

experiments the cache capacity of each node is assumed equal to

10% of the items population and the cache hit ratio of the exam-

ined replication schemes is always ≈100% we are not depicting the

cache hit performance figures. 

Also in Fig. 6 (e) we depict the max link stress metric. The re-

sults are in line with the average traffic/link stress performance

t  
ndings, i.e. , the item-level scheme performs worse than the rest

apart the k -split) when the cache of each node can hold more

han 10% of the content population. The most interesting finding

s that the k -split scheme performs significantly worse than every

ther scheme, which supports our claim that specifically designed

eplication-aware clustering schemes are necessary. The same also

olds and for the retrieval latency metric depicted in Fig. 6 (d). 

As mentioned above, the k -split algorithm forms clusters of dif-

erent sizes that might not fit in the cache of a node. Therefore,

or small caching capacities ( i.e. , 1% ≤ C / N ≤ 5%) some relatively

arger clusters that contain popular items cannot be cached within

he domain and should be fetched from the distant content server,

hus minimizing the cache hit ratio and increasing the delay and

he network traffic. For that reason, the proposed Euclidean clus-

ering scheme performs up to 35% better than the k -split algorithm

egarding the average incurred latency ( Fig. 6 (d)) and significantly

etter regarding both link stress metrics ( Fig. 6 (b) and (e)). Only

hen the cache capacities of each node are very small ( i.e., C / N

1%) the k -split algorithm is slightly better regarding the stress

etrics and this is mainly to the low hit ratio that every scheme

erforms, and the corresponding redirection of the requests to the

oot server. In such scenarios, the limited cache is better utilized

y the k -split algorithm and the corresponding Slack loss is mini-

al. 

.4. Impact of computation latency 

Fig. 7 depicts the impact of computation latency t on the perfor-

ance of the examined replication schemes. For the specific sys-

em parameters, the performance of the two clustering schemes

re not affected by the computation latency, since even when t = 1

he cluster-level replication algorithms require less than 0.5 h out
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Fig. 8. The impact of the content popularity distribution in the performance of the examined schemes. 
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f the 12 h of the observation period to compute the new repli-

ation assignment. In particular, the item-level algorithm outper-

orms every other algorithm as long as t < 0.4 in terms of core

etwork traffic ( Fig. 7 (b)). From that point and beyond, the in-

urred computation latency is so large that the fine-grained replica

ssignment at item-level is outperformed by our cluster-based

cheme. We also observe similar behaviour in terms of average

etrieval latency ( Fig. 7 (c)). In general, the partially coordinated

chemes are linearly affected by the computation latency, i.e. , the

arger the coordination factor c the larger the impact of the com-

utation latency on the performance of each scheme. 

From Fig. 7 we observe that even if we assume that the im-

act of the computational complexity is zero ( t = 0 ) the proposed

lustering scheme performs only 12% worse than the item-level

eplication algorithm (leftmost points in the performance plots).

o, the tradeoff of performance over computational complexity is

efinitely against item-level replication, since in most cases it re-

uires more than 96% additional computations in order to achieve

 performance improvement of ≈ 10%. 

Regarding the link stress metrics ( Fig. 7 (b) and (d)) we observe

hat the uncoordinated scheme performs close enough to the pro-

osed clustering scheme. The uncoordinated scheme, by caching

he locally most popular items, intuitively tries to minimize the

raffic/load that each node puts in the network. This is generally

uboptimal, but for the specific simulation parameters performs

ignificantly well ( i.e. , mainly due to the small size and the con-

ectivity of the used network topology). 

.5. Impact of content popularity 

In the above scenarios we assumed a specific value for the

ipf exponent of the items’ popularity. Measurement-based stud-
es, such as [32] , suggest that the Zipf exponent z for web traffic

ies in the range of 0 . 64 − 0 . 84 , while other types of traffic ( e.g. ,

2P or video) may follow different popularity patterns [33,34] . For

xample, in [34] authors found that the distribution of the user

ccess to video content is a Zipf-like with exponent parameter z ≈
.5. 

In Fig. 8 a wider range of values for the Zipf distribution is ex-

mined. We observe that for small values of z our proposed clus-

ering algorithm performs almost identical to the item-level repli-

ation scheme, and it outperforms every other examined replica-

ion scheme ( Fig. 8 (a) and (b)). For z ≤ 0.5, the variation of content

opularity is marginal and the outdated replica assignment (due to

he computation latency described previously) cannot diminish the

erformance of the fine grained item-level caching. In other words,

he losses during the computational period of time T rep are negligi-

le and can be saved after the exploitation of the new assignment,

ince also the old replica assignment can efficiently satisfy requests

or content that is of significant popularity. 

When z ≥ 0.7, the newly proposed clustering scheme outper-

orms the item-level replication scheme by 20% − 95% , whereas for

 > 1.5 all replication schemes outperform item-level replication. 

Regarding our main metric (average link stress), even the k -split

lgorithm which is usually 20% worse than the item-level manages

o outperform it when z > 1.5 ( Fig. 8 (b)). When the exponent of

he Zipf distribution is large enough the set of the items that ac-

ount for the majority of the requests is very small, and even the

ost simplistic uncoordinated algorithm manages to minimize the

ncurred traffic. For example when z = 1 . 5 the 0.1 · N items that

t in the cache of a node account for the ≈ 98% of the locally

enerated traffic, which means that an uncoordinated replication

cheme performs almost optimally and there is no need for more

ophisticated replication schemes of higher complexity. 
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Fig. 9. The impact of the content popularity alteration factor a in the performance of the examined schemes. 
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From the comparison of the two clustering schemes, we ob-

serve that the k -split algorithm manages to perform similarly to

our clustering scheme only for large values of z ( z ≥ 2), even

for the maximum link stress metric, where it performs up to 60%

worse for smaller values of the popularity exponent ( Fig. 8 (d)). For

large values of z , the k -split algorithm forms some small clusters

that contain the most popular items, which can fit in the caches of

the nodes and the remaining items are classified into larger clus-

ters. In this case, the k -split replication scheme manages to repli-

cate within the domain all the popular items similarly to the other

schemes. 

5.6. Impact of popularity alteration factor 

In the scenarios above we assumed a specific value for the pop-

ularity alteration factor a . Fig. 9 depicts the impact of this fac-

tor, which captures the popularity dynamics, on the performance

of the examined replication schemes. For scenarios where con-

tent popularity is almost static, i.e. , small values of a , item-level

replication is the natural choice regarding network traffic perfor-

mance. Instead in dynamic environments, clustering outperforms

item-level replication schemes significantly ( Fig. 9 (a) and (b)). 

In more details, we observe that for small values of factor a the

item-level replication scheme outperforms the rest of the schemes,

despite its high computation latency. On the other, hand when a ≥
0.3 the proposed clustering scheme performs better than the item-

level algorithm mainly due to its small computational complexity

(25 times smaller than item-level for the parameters used in the

experiment of Fig. 9 ), which results into a short first phase ( i.e.,

T rep in Fig. 2 ). 

Additionally, the three partially coordinated replication schemes

are not competitive mainly due to the poor performance of their
ncoordinated caching part (1 − c) C, despite the fact that they de-

rease their difference from the item-level algorithm with the in-

rease of the alteration factor. Only, when a ≥ 0.4 the uncoordi-

ated replication algorithm outperforms the item-level replication

cheme, since it has zero computation latency and the losses of the

tem-level caching during the update phase defined in Eq. (1) are

rreversible in the remaining time. 

The findings regarding the retrieval latency metrics ( Fig. 9 (c))

re in perfect alignment with the findings regarding the link stress

nes, with the cluster-based replication schemes and the low rate

oordination schemes (especially the uncoordinated one) being in-

usceptible to the changes of factor a , due to the small T rep period.

. Conclusions 

Content popularity dynamics and the large population of con-

ent items to be handled with caching and replication introduce

he need for low-complexity replication schemes. In this paper, we

howed that, in dynamic environments, the performance of a con-

ent replication scheme strongly depends on its complexity. Given

he vast number of items circulated over the network, we showed

ow to significantly reduce the dimensionality of the problem by

rouping content items into clusters. We proposed a replication-

ware content clustering scheme, which enables control of repli-

ation complexity and facilitates timely tracking of content pop-

larity. Our approach is generic and independent of the replica-

ion algorithm used. However, since the exact optimal number of

lusters cannot be derived analytically, we proposed a systematic

ethodology to approximate it. Our numerical results show that

he proposed replication-aware clustering scheme outperforms sig-

ificantly generic replication-agnostic clustering schemes, since the

atter tend to form unequally sized clusters. Finally, the proposed
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luster-level replication scheme requires up to 96% less computa-

ion time compared to the fine grained item-level replication, per-

orming significantly better than the straightforward approach of

tem-level replication for large networks and content catalogues. 
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ppendix A. Replication-aware clustering algorithm 

lgorithm 1 

nput: N: number of unit sized content items, 

S: size of a cluster in unit sized items (same forall clusters), 

M: number of clusters ( M = N/S), 

I: matrix with pairwise similarity metrics ofitems (n 1 , n 2 ) 

nsure: The contents of each cluster 

m i // i th item of cluster m 

n j // item j

for m = 1 to M do 

FIND min (I) // I(n i , n j ) minimum similarity distance 

PLACE m 1 ← n i // n i is the first item of cluster m 

PLACE m 2 ← n j // n j is the second item of cluster m 

I(m 1 , m 2 ) = ∞ // exclude from clustering the added items 

I(m 2 , m 1 ) = ∞ 

for s = 3 to S do 

L = [0 , 0 , . . . , 0] 

for l = 1 to N do 

for k = 1 to s − 1 do 

L (l) = L (l) + I(n l , m k ) 

end for 

end for 

FIND min (L ) // item n z with minimum distance from all

items already in cluster m 

PLACE m s ← n z // n z is the s th item of cluster m 

for k = 1 to s − 1 do 

I(m k , m s ) = ∞ 

I(m s , m k ) = ∞ 

end for 

end for 

end for 
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