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Abstract—Participatory sensing has emerged as a novel
paradigm for data collection and collective knowledge formation
about a state or condition of interest, sometimes linked to a
geographic area. In this paper, we address the problem of incentive
mechanism design for data contributors for participatory sensing
applications. The service provider receives service queries in an
area from service requesters and initiates an auction for user
participation. Upon request, each user reports its perceived cost
per unit of amount of participation, which essentially maps
to a requested amount of compensation for participation. The
participation cost quantifies the dissatisfaction caused to user due
to participation. This cost is considered to be private information
for each device, as it strongly depends on various factors inherent
to it, such as the energy cost for sensing, data processing and trans-
mission to the closest point of wireless access, the residual battery
level, the number of concurrent jobs at the device processor, the
required bandwidth to transmit data and the related charges of
the mobile network operator, or even the user discomfort due
to manual effort to submit data. Hence, participants have strong
motive to misreport their cost, i.e. declare a higher cost that the
actual one, so as to obtain higher payment.

We seek a mechanism for user participation level determination
and payment allocation which is most viable for the provider, that
is, it minimizes the total cost of compensating participants, while
delivering a certain quality of experience to service requesters. We
cast the problem in the context of optimal reverse auction design,
and we show how the different quality of submitted information
by participants can be tracked by the service provider and used
in the participation level and payment selection procedures. We
derive a mechanism that optimally solves the problem above, and
at the same time it is individually rational (i.e., it motivates users to
participate) and incentive-compatible (i.e. it motivates truthful cost
reporting by participants). Finally, a representative participatory
sensing case study involving parameter estimation is presented,
which exemplifies the incentive mechanism above.

I. INTRODUCTION

In recent years, participatory (or community) sensing has

rapidly proliferated as a paradigm for multi-modal data col-

lection and dissemination [1], [2]. The large penetration of

smartphones with various embedded sensors (e.g. camera, mi-

crophone, accelerometer, light, GPS) have greatly automatized

the information generation process, which now mostly occurs

without human intervention. On the other hand, in cases where

human intervention is needed, the ease with which information

like text, image or video can be created and uploaded, has

made the human factor almost transparent in the whole chain

of information generation, transport and consumption. Partic-

ipatory sensing has also revolutionized the field of wireless

sensor networks, since it eliminates the need for deploying a

specific purpose sensor network. It has also created a novel

viewpoint in information gathering and exploitation, which is

known as collective awareness, or collective intelligence. That

is, information can be easily collected through user contribu-

tion, and after appropriate processing and aggregation, it can

aid in forming collective knowledge about a specific state or

condition of interest, sometimes linked to a geographic area.

Collective knowledge is of value to the community at large, and,

depending on the application, it can be directly or indirectly

influential to data contributors as well.

In participatory sensing, a specific-purpose application is

launched by an application service provider. Applications that

rely on participatory sensing are abundant and diverse, and

they range from air pollution or electromagnetic field (EMF)

radiation monitoring, up to road traffic condition reporting,

prediction and tracking of disease outbreaks, or urban parking

space management. The common objective in all applications

is to represent an underlying phenomenon, process or state as

accurately as possible and deliver it to interested users. Thus,

in air pollution and EMF radiation monitoring, the target is a

dynamic city map of air pollution or EMF radiation levels; in

parking space management, the goal is to construct a map with

free parking spot locations, and so on.

There exist participants to the service, who act as information

providers. These entities submit measurement data, usually

through mobile devices, or they simply provide input, whatever

that might be, based on their own experience at their location.

Data are submitted through the wireless operator infrastructure

or WiFi access points and are forwarded to the application

service provider. There also exist subscribers to the service,

namely information consumers. These place queries related to

the service (e.g. about the air pollution level or free parking

spots) in their vicinity and require to be served. The service

provider aggregates data samples of providers and forwards

the result to querying entities for some price, thereby gener-

ating revenue. However, service availability and provisioning

at certain quality depends crucially on participation levels of
providers and on the quality of provided information. Infor-

mation providers voluntarily contribute data subject to various

costs, such as mobile device battery energy cost for sensing,

data processing and transmission, charges by the mobile oper-

ator for the bandwidth needed for transmitting data, processing

power cost, or discomfort due to manual effort to submit data.

It is therefore very important for the survivability of the service

to have appropriate incentive mechanisms to motivate users to

participate in data collection.



Incentive mechanisms can be actual payments or credits.

Payments need to be large enough to cover participation costs

and create motives for participation but also low enough, so that

the application service is maintained without much expenditure

by the service provider. The participation cost is private infor-

mation for users, and users are strongly motivated to misreport

the actual cost so as to receive higher compensation. The design

of incentive mechanisms for participatory sensing applications

that are economically viable for the application provider, yet

they encourage truthful cost reporting for users and guarantee

a given quality of service, is the problem we address in this

paper, by using the optimal auction design framework [18].

A. Related work

Participatory sensing applications can be classified into three

categories: environment-centered, infrastructure and facility re-

lated, and socially or community centered. In the first class,

the OpenSense [3] participatory sensing infrastructure performs

real-time air quality monitoring and comprises heterogeneous

sensors and a management middleware. In the second category,

an example is GreenGPS [4], which uses a vehicle interface

to measure and transmit fuel consumption and location data. It

then constructs fuel-efficient routes to destinations for querying

users. CrowdPark [5] facilitates parking reservation through

user submitted information about when parking resources will

be available, and uses this information to help other users locate

parking spots. In the same spirit but using a different approach,

ParkNet [6] application detects available parking spots using

ultrasonic sensing devices installed on cars, combined with

smart phones. Finally, in a representative system of the third

category, LiveCompare participants use their phone cameras to

take a picture of the price tag of a product of interest [7]. In

exchange for submitting a price data point, the user receives

pricing information for the product at nearby grocery stores.

Finally, in DietSense [8], individuals take pictures of what they

eat and share it within a community to compare eating habits,

e.g. in a community of diabetics.

In [9], the authors address the problem of sensor selection

out of a set of available ones, such that value of derived

measurement data is maximized, subject to sensor resource

usage constraints. The value of information is defined as the

expected weighted reduction in prediction uncertainty of the

underlying process at unobserved locations, where the weight is

the query demand load at various locations, and the expectation

is taken over the probability distribution induced on possible

available sensor locations by the selected ones.

The problem of incentive provisioning to users for con-

tributing data is a central one in participatory sensing [10].

In some cases, participation incentives are intrinsic to the

application: for example in LiveCompare, users obtain the

service, namely product prices in nearby stores, only if they

participate by submitting prices themselves. If participants

do not obtain a direct benefit from participation, appropriate

incentive mechanisms need to be designed. In the CrowdPark

system, compensation comes through subsequent gains from

re-selling the parking spot, which exceed the refund received

if they deny the spot on purpose. The work in [11] guides

credit allocation to participants by using the feedback of quality

of provisioned information (QoI) and credit satisfaction from

information requesters and participants respectively. In [12],

the authors consider users as data contributors and requesters

at the same time, and they formulate convex optimization

problems that allocate credit quota to users to maximize utility

functions that denote social welfare or fairness. User utility is

a concave function of normalized allocated credit, normalized

over user demand and contribution cost. In [13], the authors

consider a reputation-based scheme in the context of a crowd-

sourcing website. The scheme builds upon a reputation metric

that rewards or penalizes users, depending on whether their

strategy is aligned to or deviates from a social norm. The

scheme is then incorporated into a repeated game model that

captures interactions of users who contribute to and request

information from the website.

In Bayesian games [14], information about player character-

istics (e.g. payoffs) is incomplete or uncertain. Uncertainty is

captured by a random variable, the user type, whose realization

is known only to that user. Mechanism design is the branch of

game theory that seeks to influence the outcome of a Bayesian

game towards a certain objective. Auctions are an important

class of mechanism design and study rules for allocation

of a divisible or indivisible good to interested buyers and

subsequent pricing [15], under the regime of unknown private

buyer valuations. The Vickrey Clark Groves (VCG) auction

[16], [17] for divisible goods is efficient, in the sense that

it maximizes social welfare of the allocation while ensuring

truthful declaration of the private utility function. On the other

hand, an optimal auction maximizes the expected revenue of

the seller while ensuring that truth-telling is an equilibrium of

the Bayesian game among users. The seminal work in optimal

auctions for an indivisible good is [18].

Along that spirit, the recent work in [19] considers the

selection of the subset of users to collect measurements from

for maximizing system utility minus sum of payments. The

authors exploit sub-modularity of the objective above to show

that a greedy algorithm in user selection and payment solves

the problem, while the mechanism is truthful and has positive

objective function value. In [20], a reverse auction is proposed,

in which users submit their offers, and the provider selects some

of them and compensates them based on their offers. A virtual

credit is also included just for participating in the auction,

provided that the participant reduces its offer in subsequent

rounds, so that the set of winning users changes at different

times. This discourages increasing offers by winning users and

is shown to reduce compensation cost. Reverse auctions have

also been considered for designing incentive mechanisms for

3G traffic offloading [21], where users are compensated based

on the bids they submit about the delay they wish to experience

while offloading, versus price reduction.

B. Our contribution

We address the problem of designing incentive mechanisms

for data contributors for participatory sensing applications



based on a reverse auction. The service provider receives

service queries in an area and initiates a reverse auction for

soliciting user participation. Users may participate in different

capacities, e.g. by submitting different number of data sam-

ples or different types of data (e.g. text, photo, video, etc).

The amount of user participation through data contribution is

abstracted as the user participation level. Upon request, each

interested user reports its incurred cost per unit of amount of

participation, which essentially maps to a requested amount

of compensation in order to participate. The service provider

determines the participation level and payment and announces

them to the users. Users submit their data and get reimbursed.

There are several challenges in this setup. First, the mech-
anism should motivate users to participate. That is, each user

should obtain utility at least as much as that obtained by not

participating in the process. Second, the service provider does
not know the actual participation cost as perceived by users.

This can capture various types of costs such as the energy

cost for sensing, processing and data transmission, the required

bandwidth to transmit data, the processing power cost, or the

discomfort due to manual effort to submit data. The actual

participation cost in general captures dissatisfaction due to

participation and is private information for each user, since it

strongly depends on various factors inherent to the device. For

example, the perceived energy cost depends on the proximity

of the mobile device to an infrastructure base station or access

point, and on the residual amount of device battery energy. The

transmit bandwidth cost depends on the associated charges by

the mobile operator, or on whether other bandwidth-consuming

actions are carried out by the device at the same time. Similarly,

the processing power cost depends on the state of concurrent

job processing at the device processor. The cost is higher if

there exist several computationally-intensive jobs executed at

the processor at that time. Participants have strong motive to

misreport their cost, i.e. declare a higher cost that the actual

one, so as to obtain higher payment. It is therefore important

for the mechanism to induce users to declare the actual cost.

Third, the decision on user participation levels should def-

initely consider the quality of information that each user pro-

vides. For example, if a user consistently provides low quality

samples, this user should be given little or no participation

and should be compensated little. Fourth, the derived user

participation levels should lead to given guaranteed quality
of service for querying users, otherwise the service provider

clientele will be dissatisfied. At the same time, payments to

participants should be such that the service as a whole is viable
for the provider, namely the total expenditure of the provider

in order to support the service should be minimized.

The contribution of this work to the literature is as follows:

• We formulate the problem above from the point of view

of the service provider that aims at minimizing the cost of

compensating participants, while delivering a given quality

of experience to service requesters; we cast the problem

in the context of optimal reverse auction.

• We capture the absence of knowledge of the service

provider about user participation cost, which is private in-

formation for each user and is handled through a Bayesian

game among users.

• We consider the different quality of submitted information

by participants, and we show how the service provider can

keep track of it and use it to guide the participation level

and payment allocation.

• We derive a policy for user participation level and pay-

ment allocation that solves the problem above, and it is

individually rational (i.e. it motivates users to participate)

and incentive-compatible (i.e. it motivates truthful cost

reporting by participants).

• We present a representative case study on parameter esti-

mation, which exemplifies the incentive mechanism above.

Our work is different from the mechanism in [18] in that

we consider an optimal reverse auction with multiple winners.

The provider needs to fulfil a given quality of service constraint

by “buying” different participation levels from different users.

Differently from [20] and [11], in addition to the above, the

constraint of providing a guaranteed quality of service and

the consideration of quality of contributed data are novel and

are taken into account in the allocation process. Moreover,

we explicitly compute the payment and participation level for

each user. Compared to [19], our method explicitly minimizes

compensation cost, and it takes into account the computed

quality of submitted information. Furthermore, it adheres to

a participation level allocation approach rather than a user

selection one, and thus it allows for more flexibility.

The rest of the paper is organized as follows. In section II

we present the model and assumptions of our approach. In

section III we formulate the problem, we derive the optimal

auction design framework and prove the incentive-compatibility

and individual rationality of the method. Section IV presents a

representative case study, and section V concludes our study.

II. SYSTEM MODEL

A. Participants to the service

A participatory sensing application provider launches a

specific-purpose application. At a given geographical area,

service subscribers place queries which need to be satisfied.

In response to queries, the provider broadcasts a request for

data contribution in that area. A set N of N user devices

that exist in the area respond to the request. These devices are

potential participants that submit data and get compensated.

Let pi denote the payment from the service provider to user i.
The main components of the system are depicted in Fig. 1.

1) Participation level: The extent to which user i ∈ N
contributes by submitting data is quantified by a real-valued

variable xi ≥ 0 that denotes user participation level. For partic-

ipatory sensing applications that involve continuous monitoring

of a quantity of interest (e.g. EMF radiation or air pollution) or

in general rely on continuous measurements provided by mobile

devices (e.g. velocity, acceleration, so as to estimate road traffic

conditions), the user participation level is quantified as the

number of measurement samples per unit of time. Thus, xi is
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Fig. 1. The main components of the participatory sensing system. The
application provider receives service requests from subscribers and sends a
request for data contribution in the area. Each interested device i responds
with a declared participation cost ci (which maps to a requested amount of
compensation per unit of participation level). The provider determines the
allocated participation level xi(c) and payment pi(c) for each device i, where
c is the vector of declared costs.

the average sampling rate, i.e. the average rate with which the

device submits measurements to the provider. This definition is

generic enough and also captures other types of participatory

sensing applications in which users contribute by submitting

their experience in terms of an opinion, a picture, and so on.

In these cases, sampling rates refer to the specific data points

(opinions, pictures, etc) that users submit.

2) Participation cost: Each user is characterized by a per-

ceived cost Ci > 0 per unit of participation level. The cost Ci

can also be considered as user i’s minimum requested compen-

sation per unit of participation level. The actual participation

cost is private information for each user, as it depends on

various factors inherent to the device and the user. For example,

the perceived energy cost depends on proximity of the mobile

device to a point of wireless access and on the level of residual

battery energy. The transmit bandwidth cost is related to the

charges of the mobile operator, or on whether other bandwidth-

consuming actions are carried out. The processing power cost

depends on the state of the number of concurrent jobs pro-

cessed by the device processor. When it comes to manual data

insertion by the user, several subjective factors arise as well.

In conclusion, the cost quantifies the dissatisfaction caused to

user i due to participation to the service. Dissatisfaction can

be expressed in terms of resource consumption of the device

(e.g. energy, computational power, communication bandwidth)

or time, attention and effort that needs to be put by the user.

It makes sense to model the cost Ci for user i as a continuous

random variable that takes values in Ci = [ci, c̄i]. Random

variables Ci are independent from each other. Since Ci is

private information for each user i, only i knows its realization,

ci, through superposition of the various factors above that

influence the cost. The cost realization ci is the user type in the

Bayesian game setting. On the other hand, the service provider

and the users other than i, have only probabilistic knowledge

of Ci, which may capture prior information about the cost.

Let fi(·) denote the probability density function (p.d.f) of Ci,

and let Fi(·) be the corresponding cumulative density function

(c.d.f). The p.d.f and the lower and upper limits, ci, c̄i, of its

support set could be formed for example from the empirical

distribution out of prior cost declarations by the user. The

absence of prior information can be captured by taking fi(·) to

be uniform over Ci. The utility of user i for participation level

xi and payment pi is given by

ui = pi − Cixi . (1)

B. Quality of data and quality of service

Contributed data points are received and aggregated by the

service provider, depending on the application. For example,

in air pollution monitoring, the provider determines the air

pollution level through a sufficient statistic of contributed data,

e.g. averaging or a linear combination. The quality of service

to subscribers depends on (i) the participation level xi of each

user i, (ii) the quality of submitted data by each user.

Now, the latter cannot be determined at the time data is

submitted. Thus, the provider needs to rely on past experi-

ence for that. For each user i, the provider maintains and

continuously updates an empirical quality indicator qi, which

essentially measures the relevance or usefulness of information

provided by user i in the past. This can be quantified by the

average deviation of submitted samples from the result of the

aggregation of all user samples. For instance, for the class of

applications of continuous monitoring of air pollution level θ,

the provider collects user measurements and aggregates them

in some manner to compute an estimate θ̂t of pollution level

at time t. The quality indicator for user i at time t can be

computed as follows:

qi =
1

t

t∑
τ=1

(θ̂τ − s̄iτ )
2
, (2)

where s̄iτ is the average of the submitted measurements by user

i at time epochs τ prior to t. Note that we dropped the time

index from the quality indicator for notational simplicity.

Quality of service is captured by a generic, positive-valued

function g(x) of participation level vector x = (x1, . . . , xN ),
which includes as parameters the vector of qualities of submit-

ted data by users, q = (q1, . . . , qN ). Thus, in applications that

consider monitoring of a quantity of interest, like air pollution

or road traffic condition, g(·) may denote the accuracy of
estimation, e.g. in terms of average estimation error. Or, if

the application involves decision making, such as detecting

whether the measured EMF radiation level through spectrum

sensing exceeds a given acceptable threshold, g(·) may denote

the probability of detection or false alarm. We denote by β
the level of acceptable quality of service for the subscribers of

the application. Hence, the provider needs to operate under the

constraint g(x) = β.

C. The Mechanism

Upon receiving the request for participation, devices that

wish to participate report their perceived cost per unit of



participation level. As mentioned above, this cost is understood

as the user offer in terms of minimum requested compensation

for participation. The service provider collects user offers in

vector c = (ci : i ∈ N ) and it realizes the mechanism.

For given declared cost vector c, a mechanism M(c) consists

of computing a participation level vector x(c) = (xi(c) : i ∈
N ) and a payment level vector p(c) = (pi(c) : i ∈ N ) for each

interested contributor. That is, M(c) = (x(c),p(c)). Note the

dependence of participation level xi(c) and payment pi(c) for

each user i on the entire vector c of user declared costs. The

provider then announces to each user its participation level and

payment. Users respond by submitting data and accordingly get

reimbursed.

1) Bayesian Game: Once the mechanism is announced to

users, a Bayesian game is played. Recall that each user i
knows only its own actual cost ci and has only probabilistic

information about costs of others. The latter are collectively

denoted as c−i = (cj : j ∈ N , j �= i). Each user i strategically

tries to determine its declared cost in order to maximize its

expected utility,

Ec−i [ui(c)] = Ec−i [pi(c)− cixi(c)] , (3)

where the expectation above is taken with respect to types

of other users. A declared cost vector y∗ is Bayesian Nash
equilibrium if for each user i ∈ N ,

Ey∗
−i
[ui(y

∗
i ,y

∗
−i)] ≥ Ey∗

−i
[ui(yi,y

∗
−i)], for all yi ∈ Ci, yi �= y∗i .

(4)

In other words, in a Bayesian Nash equilibrium, no user has

incentive to uni-laterally change its cost declaration strategy,

because such a change would not lead to higher utility.

2) Incentive-compatibility: A mechanism is called incentive
compatible (IC), if the strategy where each user reports its true

cost is a Bayesian Nash equilibrium, Namely, for each i ∈ N
, it is:

Ec−i [pi(c)−cixi(c)] ≥ Ec−i [pi(yi, c−i)−cixi(yi, c−i)] , (5)

for all yi ∈ Ci with yi �= ci, with c = (ci, c−i). Thus, each

user prefers to truthfully report its cost instead of misreporting

its cost, given that all other users are truthful.

3) Individual rationality: A mechanism is called individu-
ally rational (IR), if for each i ∈ N and ci ∈ Ci, it is

Ec−i [ui(c)] ≥ 0, i.e. Ec−i [pi(c)− cixi(c)] ≥ 0 . (6)

Individual rationality says that at the Bayesian Nash equi-

librium, i.e. the truthful reporting strategy of users, each user

has utility at least as much as the one obtained when it does

not participate at all. For the latter case, we assume that the

participation cost and payment are zero.

III. PROBLEM STATEMENT AND FORMULATION

The application provider needs to devise a mechanism for

participation level and payment allocation to users such that its

expected expenditure for reimbursing participants is minimized.

The first challenge to confront is user rationality and selfishness.

The provider needs to consider the fact that, upon announcing

the mechanism to users, each of them will strategically try to

maximize its own utility, i.e. the reimbursement they receive,

minus the participation cost.

The second obstacle is that the provider is unaware of the

actual costs of users. Driven by their strategic behavior, users

will try to misreport their true costs in an effort to attract

larger reimbursement. Hence, the challenge lies in designing

a mechanism, in which the Bayesian Nash equilibrium after

user interaction has two desirable properties: (i) it consists

precisely of user strategies in which users honestly declare their

true cost, because they have no incentive to do otherwise, (ii)
users are strongly motivated to participate, i.e. their utility after

participation at the Nash equilibrium is greater than zero, which

is the utility for no participation.

Third, the provider needs to take into account the different

quality of samples provided by users. For that, we need to

incorporate in the model the quality indicator discussed above.

Finally, the provider needs to conform to delivering a given

expected quality of service to its service subscribers.

Define as M(c) the space of all mechanisms M(c) that

satisfy the following properties:

• P1: The allocation vector x(c) satisfies g(x(c)) = β.

• P2: M(c) is incentive-compatible (IC).

• P3: M(c) is individually rational (IR).

Property P1 refers to the feasibility constraint, namely the

mechanism should be such that it provides a given qual-

ity of service level β. Properties P2, P3 impose incentive-

compatibility and individual rationality respectively.

The problem faced by the service provider is the following:

min
M(c)∈M(c)

Ec{
∑
i∈N

pi(c)} . (7)

A. Conditions for incentive-compatibility and individual ratio-
nality

For each user i, let ci be its true cost and yi be the declared

cost. Define as Xi(yi) the expected allocated participation level

to user i, if i declares its cost as yi, while all other users declare

their true costs. That is,

Xi(yi) = Ec−i [xi(yi, c−i)] (8)

Also, define as Pi(yi) the expected compensation to i, if it

declares cost yi, while all other users declare true costs, i.e.,

Pi(yi) = Ec−i [pi(yi, c−i)] . (9)

Finally, denote by Ui(yi, ci) the expected utility for user i if it

declares cost yi instead of the true ci. Clearly, it is

Ui(yi, ci) = Pi(yi)− ciXi(yi) . (10)

Then, the condition for incentive-compatibility, expressed in

terms of the quantities above, is

Ui(ci, ci) ≥ Ui(yi, ci) ⇔ Pi(ci)−ciXi(ci) ≥ Pi(yi)−ciXi(yi)
(11)

and for individual rationality, it is,

Ui(ci, ci) ≥ 0 ⇔ Pi(ci)− ciXi(ci) ≥ 0 . (12)



We now state the following theorem.

Theorem 1: A mechanism M(c) = (x(c),p(c)) is IC and

IR if and only if for all i the following are true: (a) Xi(yi) is

non-increasing in yi, and (b) The following condition holds:

Pi(yi) = Di + yiXi(yi) +

∫ c̄i

yi

Xi(s) ds . (13)

where Di = Ui(c̄i, c̄i) = Pi(c̄i) − c̄iXi(c̄i) ≥ 0, and c̄i is the

upper limit of the support set of the cost p.d.f.

Proof: See Appendix.

In the sequel, we can substitute yi with ci due to incentive-

compatibility.

B. The application service provider optimization problem

We write the objective of the application service provider as

∑
i∈N

Ec[pi(c)]=
∑
i∈N

Eci{Ec−i
[pi(ci, c−i)]}=

∑
i∈N

Eci{Pi(ci)} .
(14)

By substituting Pi(ci) from (13) of Theorem 1, we have that

for any IC and IR mechanism, we can write each term in the

sum in (14) as

Eci{Pi(ci)} = Di +

∫
Ci

[
ciXi(ci) +

∫ c̄i

ci

Xi(s) ds
]
fi(ci) dci

= Di +

∫
Ci

ciXi(ci)fi(ci) dci +

∫
Ci

∫ c̄i

ci

Xi(s) ds fi(ci) dci .

Consider the integral in the third term above, and use integration

by parts, with integration variable ci and associated functions∫ c̄i
ci

Xi(s) ds and fi(ci) to write it as

∫ c̄i

ci

Xi(s)ds Fi(ci)

∣∣∣∣
c̄i

ci

−
∫
Ci

(−Xi(s))Fi(s)ds =

∫
Ci

Xi(s)Fi(s)ds,

(15)

because the first term in the left-hand side above is zero (since

Fi(ci) = 0), and for the second term we used the fact that

d(
∫ a

x
h(x) dx)/dx = −h(x) for a real function h(·). Thus,

Eci{Pi(ci)} = Di+

∫
Ci

ciXi(ci)fi(ci) dci+

∫
Ci

Xi(s)Fi(s) ds .

(16)

Next, we use the definition for Xi(·) from (8) and we write,

Eci{Pi(ci)} =Di +

∫
Ci

ci

∫
C−i

xi(ci, c−i)f−i(c−i)dc−ifi(ci)dci

+

∫
Ci

∫
C−i

xi(s, c−i)f−i(c−i)dc−iF (s) ds =

= Di +

∫
C
cixi(c)f(c) dc (17)

+

∫
Ci

∫
C−i

xi(s, c−i)f−i(c−i)dc−i
F (s)

fi(s)
fi(s) ds =

= Di +

∫
C
xi(c)

(
ci +

Fi(ci)

fi(ci)

)
f(c) dc , (18)

where C = ×iCi, C−i = ×j �=iCj , and f(c) =
∏

i fi(ci) due to

independence of costs. Thus, the total expected compensation

cost for the provider is:

∑
i∈N

Di +
∑
i∈N

∫
C

[
xi(c)

(
ci +

Fi(ci)

fi(ci)

)]
f(c) dc . (19)

A mechanism M(c) with Di = 0 which minimizes∫
C

∑
i∈N

[
xi(c)

(
ci +

Fi(ci)

fi(ci)

)]
f(c) dc =

=
∑
i∈N

Ec

[
Xi(c)

(
ci +

Fi(ci)

fi(ci)

)]
(20)

and satisfies properties P1, P2 and P3, solves optimally

the problem of the application provider in (7) subject to

g(x(c),q) = β, and it is IC and IR.

C. Optimal mechanism

Consider the following mechanism M(c) = (x(c),p(c)) for

the provider. For reported cost vector c ∈ C, let the participation

level vector x(c) = (xi(c) : i ∈ N ) be the solution to the

following optimization problem,

x(c) = argmin
x

∑
i∈N

xi

(
ci +

Fi(ci)

fi(ci)

)
subject to: g(x) = β .

(21)

Also, let the compensation pi(c) to each user i ∈ N be

pi(c) = cixi(c) +

∫ c̄i

ci

xi(s, c−i) ds. (22)

Let δi(ci) = ci+
Fi(ci)
fi(ci)

> 0. We state the following theorem.

Theorem 2: Assume that δi(ci) is non-decreasing in ci.
(a) If function g(x) can be written as a monotone function

of the sum of terms that are linear in xk, k ∈ N , i.e.

g(x) = h
( ∑
k∈N

γkxk

)
, (23)

with γk ∈ R, then the mechanism (21), (22) is IC and IR and

minimizes the compensation cost of the provider.

(b) If function g(x) can be written as sum of concave strictly

increasing functions {gk(xk)}, k ∈ N , i.e.

g(x) =
∑
k∈N

gk(xk) , (24)

then the mechanism (21), (22) is IC and IR and minimizes the

compensation cost of the provider.

Theorem 2 addresses two potential representative forms of

functions g(·) that capture provisioned quality of experience.

The exact form of g(·) depends on the metric it denotes, and

on how data are fused by the provider. Case (a) arises in

participatory sensing applications that involve monitoring of

a quantity (e.g. air pollution, EMF radiation). Here, g(·) may

denote inaccuracy in reconstructing the underlying field, such

as estimation error or probability of detection or false alarm,

when data processes from different users are independent. Case

(b) emerges in applications which assign a concave valuation
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Fig. 2. Participation level xi(·, c−i) for user i as function of user i’s cost
for given c−i, and ci = 0. As discussed above, xi(·, c−i) is non-increasing.

function gk(·) to data contributed by each user k. This function

captures diminishing returns in the amount of data, and quality

of service is measured in terms of the cumulative value.

Examples are finding free parking spots in CrowdPark [5] or

good biking routes in CycleSense [2].

Proof: (a) If x(c) minimizes (21) for each c, it also

minimizes the integral in (20). We show that mechanism (21)-

(22) satisfies the conditions of Theorem 1 for being IC and IR,

for Di = 0.

Since Pi(ci) = Eci [pi(ci, c−i)], we use (22) and we get

Pi(ci) = ci

∫
C−i

xi(ci, c−i)f−i(c−i)dc−i +

∫
C−i

∫ c̄i

ci

xi(s, c−i)dsf−i(c−i)dc−i = ciXi(ci) +

∫ c̄i

ci

Xi(s) ds.

(25)

Thus, condition (13) is satisfied.

To show that Xi(·) is non-increasing, it suffices to show that

xi(ci, c−i) is non-increasing in ci, as this will be averaged over

c−i to imply the same type of monotonicity for Xi(·). It can

be seen that problem (21) is a linear programming (LP) one.

The solution is given by:

xi(ci, c−i) =

⎧⎨
⎩

h−1(β)

γi
, if

δi(ci)

γi
= argmin

j∈N
δj(cj)

γj
0, else ,

(26)

where the inverse h−1(·) exists due to the monotonicity of

h(·). It can be seen that if δi(ci) is non-decreasing in ci, then

xi(ci, c−i) is non-increasing in ci, and the proof is completed.

(b) The proof goes like that of (a) for showing that (13) is

satisfied. To show that Xi(·) is non-increasing, it suffices again

to show that xi(ci, c−i) is non-increasing in ci. The Karush

Kuhn Tucker condition says that the optimal solution x∗ of

(21) should satisfy:

δi(ci) + λ∗g′i(x
∗
i ) = 0, ⇒ x∗

i = g′−1
i

(
−δi(ci)

λ∗

)
(27)

for i ∈ N , where g′−1
i (·) is the inverse function of g′i(·), and λ∗

is the optimal Lagrange multiplier for constraint
∑

k gk(xk) =

β. Note that λ∗ < 0, since g′i(·) > 0 because gi(·) is strictly

increasing. Now, g′i(·) is non-increasing since gi(·) is concave,

hence g′−1
i (·) is non-increasing as well. Also, by assumption,

δi(ci) is non-decreasing in ci. Thus, from (27) we get that xi(·)
is non-increasing in yi, and the proof is completed.

The requirement that δi(ci) is non-decreasing is met if the

pdf fi is non-increasing. This is satisfied by a wide range of

p.d.fs, including the uniform and exponential ones.

D. Interpretation of the mechanism

Consider the mechanism (21), (22). If the provider knew user

cost, it would have compensated each user i with an amount

equal to its cost ci per unit of participation level; hence the total

cost for user i would be cixi(c). However, due to incomplete

cost information, the provider gives an extra compensation of∫ c̄i
ci

xi(s, c−i)ds in order to motivate them to reveal the actual

cost. In order to obtain intuition about the payment mechanism,

we define the function

Ti(x, c−i) = sup{c ∈ Ci : xi(c, c−i) ≥ x} (28)

This is the maximum cost value that user i should declare in

order to be allocated participation level at least x, when the

other users’ cost is c−i.

In Fig. 2 we depict an example for the participation level of

user i, xi(ci, c−i), as function of its cost ci. The compensation

in (22) is equal to the area of the rectangle defined by vertical

lines at s = 0 and s = ci and horizontal lines at 0 and

xi(ci, c−i), plus the area under the curve from ci to c̄i. Now,

note that Ti(x, c−i) = y if and only if xi(y,C−i) = x. Thus,

the compensation can be written as

pi(c) = c̄ixi(c̄i, c−i) +

∫ xi(ci,c−i)

xi(c̄i,c−i)

Ti(x, c−i) dx . (29)

That is, each user i is first compensated with c̄ixi(c̄i, c−i); on

top of that, for each additional unit of increase of participation

level from x to x+dx, the user is compensated with an amount

Ti(x, c−i), equal to the maximum cost he would declare to get

participation level x, when other users’ costs are c−i.

In order to compute the participation level allocation and

payments, the provider first solves (21), which may be linear

or convex. Next, it needs to compute for each user i the tentative

allocations xi(s, c−i) for s ∈ [ci, c̄i] so as to compute the

payments in (22). In practice, it may quantize the interval

above and solve a set of optimization problems for each user i.
Likewise, it may approximate the integral as a summation and

employ numerical methods.

IV. CASE STUDY: PARAMETER ESTIMATION

As a case study, we consider a participatory sensing applica-

tion that involves accurate estimation of a slowly time-varying,

unknown, spatially homogeneous process in a certain area (e.g.

air pollution or EMF radiation at that area). Time is divided

in epochs. In order to estimate the value θ of the process in

each epoch, the provider sends a request for data contribution

and receives offers by N sensors. Fix attention to the auction

at one epoch.



Device i takes several measurements {zi(τ)} at times τ in

the epoch, given by zi(τ) = θ + ni(τ). The noise process

ni(τ) captures uncertainty of i’s measurement due to different

perception of the phenomenon process, or due to residual

measurement errors. For each i, ni can be Gaussian, zero

mean and stationary. The variance of ni, σ
2
i = E[n2

i ], captures

measurement inaccuracy. Noise processes of any two sensors i
and j are spatially and temporally uncorrelated. Sensors submit

measurements to the provider. At the end of the epoch, the

provider computes an estimate θ̂ of the unknown parameter θ
in the Maximum Likelihood sense and transmits the result to

service subscribers. Suppose that sensor i takes xi measure-

ments. The criterion for quality of service is mean squared

estimation error (MSEE), E[(θ − θ̂)2. In [22], we have shown

that the MSEE is g(x) =
(∑N

i=1
xi

σ2
i

)−1

.

The quality qi of measurement data of sensor i can be cap-

tured by variance, σ2
i . However, the provider does not know σ2

i

and uses as approximation the average squared deviation of data

of sensor i from computed estimates {θ̂τ} at previous epochs

τ . Namely, σ2
i is approximated by qi in (2). The participation

level of sensor i is the number of its measurements, xi. The

provider has the constraint g(x) = ε, where ε is a specified

acceptable estimation error, and thus,

N∑
i=1

xi

qi
=

1

ε
. (30)

The cost ci (e.g. energy cost) per measurement for sensor i
is unknown to the provider and is assumed to be uniformly dis-

tributed in [αi, bi]. The coefficient of xi is δi(ci) = ci+
Fi(ci)
fi(ci)

=
2ci−αi. The mechanism that minimizes the compensation cost

for the provider subject to the quality of service constraint (30)

and being IC and IR, comes from the solution to (21). In our

case, the problem is an LP one. Let

i∗ = arg min
i=1,...,N

(2ci − αi)qi . (31)

Then, the optimal participation levels are:

xi∗ =
qi∗

ε
, and xj = 0 for all j �= i∗ . (32)

Define function z(c−i) = sup{c : qiδi(c) ≤ mink �=i qkδk(ck)}.

This is the maximum declared cost of i that can make him win

the auction against declared costs of others, and it is

z(c−i) =
1

2

[
αi +

1

qi
min
k �=i

[qk(2ck − αk)]

]
. (33)

Rule (32) can be written as:

xi(c−i) =

{
qi/ε, if ci ≤ z(c−i),
0, else .

(34)

From (22), the payment for the single selected user will be:

pi =
qi
ε
zi(c−i) . (35)

The participation level allocation mechanism takes into

account declared costs, lower bounds of cost intervals and

data qualities. Among sensors with the same data quality, the

mechanism chooses sensor i with the smallest (2ci − αi).
Interestingly enough, the mechanism does not simply favour

the sensor with the smallest cost ci but also the one for which

the cost is closer to the lower bound. Among sensors with the

same (2ci − ai), the sensor with the smallest qi (i.e the best

data quality) is selected. The participation level and payment

are proportional to the data quality of the selected sensor.

The VCG mechanism [23, Chap.6], [24, Sec.II.C], which

leads to socially optimal allocation while being IC and IR,

allocates participation level and compensation so as to minimize

total sensor cost,
∑N

i=1 cixi, subject to (30).

Let ĩ = argmini ciqi, then the VCG participation level

selection is: xĩ = qĩ/ε, and xj = 0, for j �= ĩ. The VCG

compensation for the winner ĩ is the difference between the

total cost of sensors j �= ĩ when winner ĩ does not participate

in the auction, and the total cost of sensors j �= ĩ when ĩ
participates in the auction. In the latter case, this cost is zero.

Now, if the winner ĩ does not participate in the auction, there

will be another sensor, i′ with the second smallest ciqi who will

be winner and will be allocated all participation level; then the

total cost for sensors j �= ĩ is ci′qi′/ε. Hence, the compensation

to winner ĩ is ci′qi′/ε.

V. CONCLUSION

We addressed the design of incentive mechanisms for par-

ticipatory sensing applications that are optimal in the sense of

minimizing compensation cost to participants by the application

provider, subject to delivering a certain quality of service to

subscribers. Inherent in our design are incentives for user partic-

ipation and truthful cost declaration. The model we considered

includes the participation cost and compensation for each user

and serves as a first step towards understanding the structure

of the solution. Future research could enhance the model

along various directions, such as considering the similarity of

device measurements (e.g. due to neighboring locations) when

deciding about participation levels and payments. This could

further improve the cost of the provider, while eliminating

potential data redundancies.
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APPENDIX

PROOF OF THEOREM 1

First, assume that for a mechanism M(c), Xi(·) is non-

increasing and condition (13) holds. We will show that M(c)
is IC and IR for any user i. For ci ∈ Ci we have

Ui(ci, ci) = Pi(ci)−ciXi(ci) = Di+

∫ c̄i

ci

Xi(s) ds ≥ 0 , (36)

where we used (13), and the fact that Di ≥ 0 and Xi(·) ≥ 0.
Thus, the mechanism is IR. Furthermore by using again (13),

Ui(ci, ci)−Ui(yi, ci)=

∫ c̄i

ci

Xi(s)ds−
∫ c̄i

yi

Xi(s)ds+(ci−yi)Xi(yi) .

(37)

We distinguish two cases: (i) if yi < ci, then for the right-hand

side of (37) we have

−
∫ ci

yi

Xi(s) ds+ (ci − yi)Xi(yi) ≥

−Xi(yi)

∫ ci

yi

ds+ (ci − yi)Xi(yi) = 0,

where the inequality is due to the fact that Xi(s) ≤ Xi(yi)
∀s ∈ [yi, ci], since Xi(·) is non-increasing.

(ii) If ci < yi, the right-hand side of (37) becomes∫ yi

ci

Xi(s) ds+ (ci − yi)Xi(yi) ≥

Xi(yi)

∫ yi

ci

ds+ (ci − yi)Xi(yi) = 0,

where the inequality is due to the fact that Xi(s) ≥ Xi(yi) ∀s ∈
[ci, yi], since Xi(·) is non-increasing. Thus, we have proved

that Ui(ci, ci) ≥ Ui(yi, ci) for all ci, yi ∈ Ci, and thus the

mechanism is IR for each user i.
For the inverse, consider an IC and IR mechanism. We will

prove conditions (a)-(b). Incentive-compatibility implies that

for any w, z ∈ Ci with w < z, it is Pi(w) − wXi(w) ≥
Pi(z) − wXi(z) and Pi(z) − zXi(z) ≥ Pi(w) − zXi(w).
By adding these inequalities and rearranging terms, we get

(z − w)Xi(z) ≤ (z − w)Xi(w). Since z − w > 0, it must

be Xi(z) ≤ Xi(w), and thus Xi(·) is non-increasing, thus (a)

is proved.

For condition (b), we start by defining Gi(ci) = Ui(ci, ci).
Due to incentive-compatibility, it is:

Gi(ci) = max
yi∈Ci

Ui(yi, ci) = max
yi∈Ci

{Pi(yi)− ciXi(yi)} . (38)

This implies that Gi(ci) is the maximum of a family of

affine functions of ci, and thus it is convex and differentiable

everywhere, except at countably many points. We compute

lim
ε→0

Gi(ci + ε)−Gi(ci)

ε
≥ lim

ε→0

Ui(ci, ci + ε)−Gi(ci)

ε
=

lim
ε→0

Pi(ci)−(ci + ε)Xi(ci)−Pi(ci)+ciXi(ci)

ε
=−Xi(ci) (39)

where the inequality above is due to (38). Similarly,

lim
ε→0

Gi(ci)−Gi(ci − ε)

ε
≤ −Xi(ci) (40)

Inequalities (39) and (40) mean that G′
i(ci) = −Xi(ci).

Therefore, for any yi ∈ Ci,

Gi(c̄i)−Gi(yi) = −
∫ c̄i

yi

Xi(s) ds (41)

and by substituting Gi(·), we have

Pi(c̄i)−c̄iXi(c̄i)−Pi(yi)+yiXi(yi) = −
∫ c̄i

yi

Xi(s) ds , (42)

and finally

Pi(yi) = Di + yiXi(yi) +

∫ c̄i

yi

Xi(s) ds . (43)

Thus, we get (13) of Theorem 1, and we proved condition (b).

Note that individual rationality at c̄i implies Pi(c̄i)−c̄iXi(c̄i) ≥
0, which means Di ≥ 0.


