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Abstract—We look into the realization of mobile crowdsensing
campaigns that draw on the opportunistic networking paradigm,
as practised in delay-tolerant networks but also in the emerging
device-to-device communication mode in cellular networks. In
particular, we ask how mobile users can be optimally selected
in order to generate the required space-time paths across the
network for collecting data from a set of fixed locations. The
users hold different roles in these paths, from collecting data with
their sensing-enabled devices to relaying them across the network
and uploading them to data collection points with Internet
connectivity. We first consider scenarios with deterministic node
mobility and formulate the selection of users as a minimum-
cost set cover problem with a submodular objective function.
We then generalize to more realistic settings with uncertainty
about the user mobility. A methodology is devised for translating
the statistics of individual user mobility to statistics of space-
time path formation and feeding them to the set cover problem
formulation. We describe practical greedy heuristics for the
resulting NP-hard problems and compute their approximation
ratios. Our experimentation with real mobility datasets (a)
illustrates the multiple tradeoffs between the campaign cost and
duration, the bound on the hopcount of space-time paths, and
the number of collection points; and (b) provides evidence that
in realistic problem instances the heuristics perform muchbetter
than what their pessimistic worst-case bounds suggest.

I. I NTRODUCTION

Mobile crowdsensing has emerged over the last decade
as a powerful mechanism for generating collective knowl-
edge about a phenomenon or condition of interest through
contributions of sensor data by individuals [7]. These data
may be measurement samples, text and even photographs or
video clips and are typically generated by mobile devices with
sensing capabilities such as smartphones. The aggregationand
processing of these data gives rise to diverse services ranging
from traffic jam prediction and parking space management to
environmental monitoring and social journalism.

Mobile crowdsensing implementations usually involve three
main actors: the end-users that contribute the sensor data
(data providers), the Service Provider (SP) processing the
collected data to generate a service out of them, and the end-
users that subscribe to this service (data consumers), most
often through a mobile application running on their devices.
A common challenge for most of these implementations is
to identify those end-users who can contribute most value to
the service and motivate their participation. In our work, the
motivation part is served by monetary incentives. The sensor

data providers announce the fees they charge for contributing
to the data collection campaign and it is then up to the service
provider to recruit those who bear the highest value for money
for the its service.

Interestingly, the majority of the current literature assumes
that the end-users use the cellular network resources for trans-
ferring data to the SP as soon as these are generated by their
devices’ sensors. We argue that there are at least three good
reasons not to do so –and instead prefer alternative transport
alternatives for the sensor data. Firstly, this practice implies
a significant cost in terms of battery and data subscription
plan consumption; if this cost is rationally reflected into the
fees the users claim, it raises considerably the cost of the
crowdsensing campaign. Secondly, and depending on the type
of the collected data (e.g., the quality photos sought in [11]),
crowdsensing campaigns generate additional workload for the
cellular network. This workload is anything but negligible
considering the projected scale of these campaigns by the
time crowdsensing reaches maturity and that many of these
campaigns will be taking place during the network busy hours.
Thirdly, on a more constructive note, there are alternative
transport paradigms for sensor data that can alleviate these
concerns. Opportunistic networking is viewed as a promising
complement to the cellular networks in different respects,e.g.,
for offloading delay-tolerant traffic load from them [10]. On
the other hand, the device-to-device (D2D) communications
mode (e.g., [6]) essentially introduces a multihop opportunis-
tic layer straight into the cellular network architecture,through
which mobile devices can communicate directly, without the
intervention of base stations.

The realization of crowdsensing over an opportunistic net-
working transport layer, where the assumption of continuous
connectivity to the Internet breaks, radically transformsthe
possible roles and value of end-users. Hence, a user who
senses data from various locations may not necessarily have
a way to transfer them by her own meansonly to the SP;
whereas users who do not sense any data themselves, may
bear high value for a crowdsensing campaign as relays of
data of other users thanks to their encounters with them.
Our paper looks into the problem of sensor selection in this
fundamentally different setting. We formulate the underlying
optimization problem, analyze its theoretical properties, and
propose practical algorithms for solving it.



A. Related work

Mobile crowdsensing and the closely-related paradigms
such as participatory sensing and human/people-centric sens-
ing have motivated much research work over the last decade.
For recent surveys of this work and the remaining open
challenges, the interested reader is referred to [7] and [14].

On the contrary, much sparser is the literature on the
realization of crowdsensing over opportunistic networks.We
are aware of three studies under this thread,i.e., [15] [16] [17].
Common to all of them is the assumption that the sensed data
are generated randomly or periodically by the mobile users,
as the case is with health- or fitness-monitoring applications;
none of them considers location-dependent data raising cover-
age concerns. The objective then, as with the original routing
and data dissemination scenarios in opportunistic networks, is
to deliver the maximum amount of these data to the sink(s),
as fast as possible and with minimum replication overhead.

More specifically, in [16] the mobile sensing nodes are
distinguished into those acting exclusively as data providers
and those high-end ones also serving as sinks (e.g., upload
information to the Internet). The paper proposes two heuristic
schemes for the delivery of sensed data to the sinks, which
are shown to be performing comparably in terms of message
delivery probability and delay, and complementarily with
respect to the management of the nodes’ storage space and
message overhead. In [17] the setting is similar only now
the nodes decide strategically upon encounters with other
nodes whether they will contribute to the forwarding of a
particular data item towards the single network sink or not.
The authors assume that the sink rewards with credit only
nodes that deliver messages to it; hence, they can approach
the pairwise encounters as instances of two-person cooperative
games, during which the two nodes need to identify which
set of messages are worth exchanging with each other. They
apply the Nash bargaining Theorem to obtain the optimal
solution to these games and propose a greedy algorithm that
iteratively selects the pair of files maximizing the utility
of the exchange, within the constraints set by the battery
resources of the devices. Finally, the work in [15] lies closer
to the participatory sensing framework in [12], by including
an explicit sensor recruitment phase, initiated well in advance
of the data collection phase. Contrary to the other two studies,
the sensed data are location-dependent but this dependenceis
accounted for indirectly via the recruitment phase: the nodes
selected for the sensing task are those visiting more frequently
and for longer time intervals the locations of interest, as this is
inferred from historical data about the node mobility patterns.

B. Our contributions

We address the problem of user/sensor selection in the
context of mobile crowdsensing campaigns that draw on the
opportunistic networking paradigm. The campaign aims at the
collection of location-based data, while users, dependingon
their mobility patterns, may undertake different roles,i.e.,
sense or relay the original sensor data. To the contributions
of our paper count the following:

• We formulate the problem under both deterministic and
stochastic user mobility as instances of the minimum cost
set cover problem with submodular objective functions
(Sections III-A and IV-A).

• We describe a method for computing the probability
with which different space-time paths are realized across
the opportunistic network out of data about the nodes’
mobility patterns in the past (Sections IV-B and IV-C).

• Since the problem is NP-hard, we propose practical
greedy heuristics and derive the approximation ratios they
achieve (Sections III-B and IV-E).

• We evaluate the overall approach over experimental node
mobility datasets to demonstrate the multiple tradeoffs
between the campaign parameters and provide evidence
that the performance of the greedy heuristic in real
problem instances is much better than what their worst-
case analysis implies (Section V).

As in [15]- [17], our work considers the general mobile
crowdsensing paradigm rather than a particular application
and draws on contact traces to evaluate the performance
of the proposed algorithms. However, contrary to [16] and
[17], in our case there are certain locations that have to
be sensed/covered. Our recruitment process, unlike the one
in [15], explicitly considers the coverage of and the fees
charged by end-users in the recruitment process. Moreover,
the payments are monetary and made to all nodes contributing
to the delivery of the sensor data to the sinks, as either sensor
nodes or relays. Consequently, relevant performance metrics
to our work are the campaign’s coverage and cost rather than
the message-related ones (delivery, delay, overhead) usedfor
assessing more typical DTN applications.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

The two main actors in the model we consider are the mo-
bile end-users and an entity that organizes the mobile crowd-
sensing campaign, hereafter called the campaign organizer
(CO)1. The CO is interested in collecting data from a set of
Points of Interest (PoIs) within a time interval[t1, t2]; without
loss of generality, assumet1 = 0 andt2 = Tc. These data can
be collected by mobile users carrying sensing devices as long
as they accept to participate in the crowdsensing campaign.
Practically, this may imply downloading and running a custom
application on their smartphones.

Let L = {l1, l2, . . . , lL}, be the set of PoIs andU =
{u1, u2, . . . , uN} the set of mobile users who could potentially
be engaged in the crowdsensing task. Practically,U could
coincide with the full set of mobile users traversing the area
of interest or a subset of those fulfilling some criteria suchas
the possession of a sensing-capable smartphone. The mobile
users move in different manner so that each useruk visits
a subset of PoIsSk ⊆ L, k = 1, 2, . . . , N over time Tc.
In parallel,uk may encounter another userum participating

1In general, the CO entity does not need to coincide with the SPentity but
may be a third entity to which the user selection task is delegated.



contact 

id

involved 

nodes

contact 

start 

time

contact 

end 

time

... ... ... ... ...

con
1

u
1

l
1

t
1s

t
1e

con
2

u
1

c
1

t
2s

t
2e

con
3

u
1

u
5

t
3s

t
3e

con
3

u
1

u
5

t
3s

t
3e

con
4

u
4

l
4

t
4s

t
4e

con
5

u
1

u
4

t
5s

t
5e

con
6

u
2

l
l

t
6s

t
6e

con
7

u
4

l
3

t
7s

t
7e

con
8

u
3

u
4

t
8s

t
8e

con
9

u
2

u
5

t
9s

t
9e

con
10

u
3

c
1

t
10s

t
10e

con
11

u
5

c
1

t
11s

t
11e

… … … … …

l1

l4

u4

u1

upld(m1)

upld(m m m )

u5

upld(m1, m2)
c1

l2

l3

u3
u2

upld(m1, m3, m4 )

: measurement : pair-wise node encounter

Fig. 1. Example of a crowdsensing campaign with a single collection point
over an opportunistic network made up by the encounters on the left side.
Data from PoIl1 are uploaded by the same user who collected them. Data
from all other points,l2, l3, and l4 reach the collection point with the help
of the intermediate usersu3 andu5, who do not themselves collect any data.

in the crowdsensing campaign, and exchange with her data
from any PoIs they have visited up to that time (essentially
subsets ofSk and Sm, respectively). Eventually, the data
from the different PoIs need to reach the server(s) of the CO
(SP) at the fixed network and this is possible through a set
CP = {cp1, cp2, ..., cpC} of C = |CP| collection points such
as WiFi APs scattered across the area of interest and accessible
to the campaign participants free-of-charge.

Each useru charges a feecu for her participation in
the campaign accounting for the extra consumption of her
battery but also potential cognitive effort and time demanded
by the data collection process. This is communicated to the
CO in response to its campaign announcement,e.g., over
a crowdsourcing-type of interface (e.g., [1]). The CO then
seeks to identify and recruit those users who will collectively
gather the data from all PoIs at the minimum possible cost.
To formulate the problem the CO faces, consider the set
of PoIs. Data from every PoIl ∈ L can reach the data
collection points through a set of space-time paths (STPs)
realized through the mobility of nodes and their time-ordered
encounters within timeTc. Each STP involves the user serving
as the sensing node and zero or more other users relaying
the data till they reach anyone of the collection points. For
example, in Fig. 1p1 = {l1, u1, c1}, p2 = {l1, u1, u5, c1} and
p3 = {l1, u1, u4, u3, c1} are three different STPs, over which
data from PoIl1 can reach the collection pointc1. In all three
cases, the data are collected by useru1 but relayed by different
nodes before being eventually uploaded toc1.

B. Problem formulation - deterministic mobility

For the purposes of our modeling formulation, it is con-
venient to consider the sequences of users whocollectively
realize these STPs. To facilitate notation, we call themdata-
collection pathsand abbreviate their subset that realizes STPs
for a particular PoIl asDCPl. In the earlier example of Fig.
1, the user sequences{u1}, {u1 u5}, and {u1 u4 u3} are
data-collection paths inDCPl1 corresponding to the STPs
p1, p2, and p3, respectively. Note that the DCP modeling
construction already entails the chronological order of the
involved encounters and abstracts away the actual locationof

the PoIs and the data collection points.
With this notation at hand, the optimization problem the CO

seeks to solve can be written as:

minimize
∑

u∈U

xucu

s.t.
∑

p∈DCPl

∏

u∈p

xu ≥ 1 ∀l ∈ L (P1)

xu ∈ {0, 1}

The set ofL constraints in the second line of(P1) require
that the selection of users by the CO needs to be realizingat
leastone of the data-collection paths for each PoI.

C. Mobile crowdsensing over the cellular infrastructure: a
plausible benchmark

The mobile crowdsensing implementation over multihop
opportunistic networks generalizes its more common operation
over the cellular network infrastructure. There, a mobile user
directly uploads any data it collects from PoIs through the
network radio access point (e.g., 2/2.5G base station, 3G
NodeB or LTE eNB) she is attached to. The data-collection
paths are singletons and the respective STPs are the ordered
pairs emerging from the DCPs when these are prefixed by the
PoI id. Each useruk is univocally linked to a set of PoIs,
Sk, it can coverindependentlyfrom other users and the user
selection task simplifies to the familiar minimum-cost set cover
problem with fixed user-specific cost values.

minimize
∑

u∈U

xucu

s.t.
∑

u:l∈Su

xu ≥ 1 ∀l ∈ L (P2)

xu ∈ {0, 1}

It is straightforward to see that:

Proposition 1. The optimal solution of (P2) serves as a tight
lower bound to the optimal solution of (P1).

Proof. Consider the optimal solution of (P2),(P2)opt, con-
sisting of one or more users who together cover all PoIs at
minimum cost. When we replace the cellular network with
an opportunistic one, the users that can upload data to the
collection point(s) are, in the general case, only a subset (even
the null one) of(P2)opt. Hence, more users are needed to
serve as data relays and/or uploaders and the optimal solution
of (P1), (P1)opt 6= (P2)opt with |(P1)opt| ≥ |(P2)opt|
and

∑

u∈(P1)opt
cu ≥

∑

u∈(P2)opt
cu. Clearly, (P1)opt will

coincide with(P2)opt, if the set of users in(P2)opt suffices
to generate valid STPs for all PoIs, without the need for
additional users. An extreme scenario is thatall users in
(P2)opt encounterthemselvesthe collection point(s) within
the durationTc of the crowdsensing campaign and after hitting
the PoIs they cover as part of(P2)opt. In more realistic
scenarios, the two solutions also coincide when the time order
of node pairwise encounters is such that a non-empty subset



x ∈ (P2)opt can upload to the collection points data from
the residual(P2)opt \ x users, after encountering them and
copying their data. Since these scenarios are generally feasible,
the bound is tight.

III. U SER RECRUITMENT THROUGHDCP SELECTION: A

GREEDY HEURISTIC

A. Minimum-Cost Set Cover (Re-)Formulation

We can draw on the definition of data-collection paths to
re-formulate the problem (P1) as a generalizedSet Covering
problem, involving only linear constraints (over integer vari-
ables) along with a submodularcost functionover feasible
solutions. In particular, defineP = ∪l∈LDCPl to be the set
of all DCPs; each elementP ∈ P constitutes a DCP for at
least one PoI fromL. Under this definition, the CO seeks
Q ⊆ P of minimum total cost:

Z(Q) =
∑

u∈(∪P∈QP )

cu, (1)

such that, for everyl ∈ L, there exists at least oneP ∈
Q ∩ DCPl. Notice that this is indeed a minimum costSet
Covering formulation for the problem2, wherein we choose
data-collection paths to “cover” the PoIs. The most significant
feature of this formulation is the objective function,Z(·)
in (1); it is a submodularfunction over the space of feasible
solutions. In particular, for any two subsetsQ1, Q2 of P , Z
satisfies:Z(Q1 ∪ Q2) + Z(Q1 ∩ Q2) = Z(Q1) + Z(Q2).

Introducing an additional binary variable,yP for each
P ∈ P , the problem can be stated as an Integer Linear Pro-
gram involving only linear constraints and a linear objective
function, as follows:

minimize
∑

u∈U

cuxu

s.t.
∑

P∈DCPl

yP ≥ 1 ∀l ∈ L (P3)

xu − yP ≥ 0 ∀P ∈ P , ∀u ∈ P

xu, yP ∈ {0, 1} ∀P ∈ P , ∀u ∈ U

The first set of constraints ensures that at least one data
collection path is chosen for every PoIl ∈ L. The second
set of constraints forces the selection of useru ∈ U (xu = 1),
whenever a pathP with u ∈ P is chosen (yP = 1).

B. A greedy heuristic for (P3)

(P3) comes under the category of NP-hard problems; hence
the question arising is what can be said about its approxima-
bility and what could be an acceptable algorithm for (sub-
optimally) tackling it. To begin with, for the generic Set
Cover with a submodular cost function, the recent primal-
dual algorithm of Koufogiannakis and Young [9] yields a∆-
approximation, where∆ corresponds to the maximum number
of variables in each linear“covering” constraint (first set of
constraints in (P3)). Whereas this approximation is particularly

2It may also be considered as an – equivalent –Hitting SetProblem, wherein
we seek a solution that“hits” every setSTPl, for every l ∈ L.

attractive for problem instances such as Vertex Cover, where
∆ = 2, the number of variables per constraint equation in (P3)
equals the number of DCPs per PoI. This is highly variable
and grows fast with the number of mobile usersN and the
hopcount of the respective STPs.

Therefore, a practically more promising alternative is pro-
vided by the following greedy heuristic.

Algorithm 1 Greedy heuristic for sensor selection under
deterministic user mobility

1: Q ← ∅; U ← ∅;
2: while ∃l ∈ L : DCPl ∩ Q = ∅ do :

3: P ← arg min
P∈P\Q

[

c(P |U)/|L(P )|
]

;

4: Q ← Q∪ {P}; U ← U ∪ P ;
5: return Q;

The heuristic is a straightforward adaptation of the well
known greedy Set Covering heuristic by Chvátal [5], to the
case of a submodular cost function. In each step the algorithm
selects the DCP minimizing the ratio of the additional fees
that have to be paid to new users involved in it, over the set
of new PoIs it covers with respect to already selected DCPs.
In describing the algorithm, we have definedL(P ) = { l ∈
L |P ∈ DCPl }, to be the set of PoIs covered by pathP ∈ P
andc(P |U) =

∑

u∈P\U cu for anyU ⊆ U andP ∈ P to be
the excess cost related to users inP but not inU .

Proposition 2 shows that Algorithm 1 achieves a factor|L|-
approximation,i.e., it is independent of the input set,P , of
data-collection paths and the cardinalities of{DCPl}, l ∈
L. This renders the greedy algorithm more robust than the
primal-dual one of [9] in terms of worst-case performance, in
a situation where we might need to generateP according to
exogenous restrictions (time, processing power, memory).The
actually generated familyP affects the cost of the optimum
solution to the problem,c(Q∗), but the algorithm’s worst-case
performance depends solely onc(Q∗) and |L|.

Proposition 2. The Greedy algorithm for minimum cost Set
Cover with submodular cost function achieves factor|L|-
approximation of the optimum cost, where|L| denotes the
number of ground elements (in our case, PoIs) to be covered.

Proof. The proof amounts to showing that, in every step, the
Greedy algorithm increases the current (partial) solution’s cost
by at mostc(Q∗), whereQ∗ denotes the optimum solution.
Since the algorithm covers at least one more point fromL at
each step, the result follows.

For each step,s, let Ps ∈ P denote the path chosen at step
s. Accordingly, defineQs = {P1, P2, . . . , Ps} to be the partial
solution after steps, andUs = ∪s′≤sPs and letLs ⊆ L be
the subset of PoIs that are covered after steps. Finally, set
Q0 = U0 = L0 = ∅.

For s = 1, our argument holds,i.e., c(P1 | ∅)/|L(P1)| ≤
c(Q∗), because, otherwise,P1 does not minimize the ratio
of cost over number of covered points. At any steps, a



sub-problemremains to be solved, concerning|L \ Ls−1|
PoIs, where|L \ Ls−1| < |L \ Ls−2|. Moreover, each of the
remaining pathsP ∈ P \ Qs−1 has costc(P |Us−1) ≤ c(P ).
This sub-problem has an optimum solutionQ∗

s−1, of total
cost c(Q∗

s−1 |Us−1) (we abuse slightly the notationc(·|·)
here). Then,c(Q∗

s−1 |Us−1) ≤ c(Q∗), becauseQ∗ is also
feasible for the sub-problem. The pathPs, chosen at steps,
must satisfyc(Ps |Us−1)/|L(Ps) \ Ls−1| ≤ c(Q∗

s−1 |Us−1)
for, otherwise, it does not minimize the ratio of cost over
number of PoIs that it covers. Then, to conclude the proof,
if Q = {P1, P2, . . . , P|Q|} is the solution output by the
algorithm, we have:

c(Q) =

|Q|
∑

s=1

c(Ps |Us−1)

≤

|Q|
∑

s=1

c(Q∗
s−1 |Us−1) · |L(Ps) \ Ls−1|

≤ c(Q∗)×

|Q|
∑

s=1

|L(Ps) \ Ls−1| = |L| · c(Q
∗)

where the latter equality stems from the fact that|L(Ps) \
Ls−1| ≥ 1, for any steps = 1, . . . , |Q|. That is, the algorithm
covers at least one new PoI in each step. The sum has to be
totalling |L|.

A simple implementation of the Greedy algorithm described
above requiresO

(

|L|2(|U| + |P|)
)

steps. The outer loop

requiresO(|L|) iterations in the worst-case; in each iteration
we need to scan / update two matrices ofO(|L| · |U|) and
O(|L| · |P|) sizes, respectively.

IV. A CCOUNTING FOR THE UNCERTAINTY OF NODE

MOBILITY

A. Annotating DCPs with coverage probabilities

The analysis in section II-A is subject to the strong assump-
tion that the user trajectories over the area of interest canbe
perfectly known/predicted. This is the case with only a limited
set of opportunistic network instances such as those realized
by track-based transportation system nodes.

On the contrary, in almost all envisaged realizations of
mobile crowdsensing, there is no control over the way the
end-user nodes move. Nevertheless, there is almost always
structure in their mobility patterns and multi-timescale peri-
odicities, induced by their daily routines and social activities
(e.g., trips from home to workplace and back and visits to
friends, relatives and recreation places). The challenge for the
recruitment phase of the campaign is then to take advantage
of historical information about these mobility patterns soas
to optimize its selection of users.

Technically, the space-time paths between PoIs and collec-
tion points are realized probabilistically rather than determin-
istically over the lifetime of the campaign so that a given
DCPP covers a PoI, sayl, with probabilityqPl that depends
directly on whether the involved mobile nodesactually visit

the PoI and encounter with each other. As a result, one
plausible objective emerging for the recruitment process is
the minimization of the payments that have to be made to
the selected nodes to achieve a probabilistic guarantee about
the coverage of the PoIs.

More formally, the optimization problem faced by the CO
entity can be written as:

minimize
∑

u∈U

cuxu

s.t.
∑

P∈DCPl

yP · qPl ≥ 1 ∀l ∈ L (P4)

xu − yP ≥ 0 ∀P ∈ P , ∀u ∈ P

xu, yP ∈ {0, 1} ∀P ∈ P , ∀u ∈ U

Compared to (P3), the first set of constraints now demand that
theexpectednumber of paths covering each PoI be at least one.
Practically, thecoverage probabilities{qPl} can be computed
with the help of information about the nodes’ mobility in the
past. Such information may come from logs of the GPS or
other positioning systems exported by the application itself or
from other sources such as check-ins in online (location-based)
social networking sites [4].

B. Representation of node mobility data

The first step in this direction is a concise representation
of the nodes’ mobility profiles. To this end we partition the
two main dimensions of this mobility,i.e., time and space,
into T intervals andS blocks, respectively, and represent each
user with anSxT row-stochastic user location probability
matrix fu; each elementfu(s, t) represents the time-varying
probability that the useru lies in space blocks during time
interval t.

The number of space blocks is determined by the size of
the area of interest and the radio coverage of the PoIs and
sinks, i.e., the distance over which measurement data can be
collected from (resp. uploaded to) them. The assumption is
that no more than one PoI or sink lies within a given space
block so thatS > L. The number of columnsT is computed
as T = Tc/ts, where ts equals the time step over which
the historical data are aggregated and processed to derive the
time-dependent probability distribution of the node’s locations
fu(s, t), 1 ≤ s ≤ S. The value of ts is either chosen a
priori or indirectly induced by the frequency of the location
reports/measurements, as exported by GPS or other positioning
technologies. In general, smallerts values result in higher
precision but also higher storage and processing requirements
for the node mobility representation.

C. Computation of STPs and their formation probabilities

This step involves the derivation of space-time paths of the
form (PoIl, UP , CPk), whereUP ⊆ U ; namely, space-time
paths that originate from some PoI, end at a collection point
and are realized over a subset of user nodes. This computation
is carried out iteratively over successive time intervals drawing
on the user location probability matrices{fu} and builds a



list Ldcp of all space-time paths that can emerge with non-
zero probability. At any point in time,Ldcp lists a number
of “open” paths of the form(PoIl, UP ), a subset of which
will eventually “close” by the end of the campaign with a
suffix node corresponding to a collection point; these are the
space-time paths of interest. Besides the derivation of the
paths as such, this processing step continuously updates their
cumulative formation probabilities.

Technically, the following four processing steps are repeated
upon each time interval.

1) Search for visits of user-nodes at space blocks hosting
PoIs: Such visits imply that data from a PoI, sayl, can be
collected from a user, sayu, at time intervalt and correspond
to a non-zero value offu(l, t). Two possibilities exist:

• This is the first timeu visits l: then a new DCP entry
[(PoIl, u), fu(l, t)] is added to the list of possible DCPs.

• There is already an entry[(PoIl, u], fP ) in the list due to
a visit of u at space blockl in the past: then the second
field of the entry (the formation probability of the DCP) is
updated to1−(1−fP )(1−fu(l, t)). This value equals the
probability thatu has run acrossPoIl up to and including
the intervalt.

2) Search for encounters giving rise to new possible paths:
For each entry(P, fP ) ∈ Ldcp, we are considering the most
recently added user-nodev and the set of positive values
SP (v, t) ⊆ S in its location probability matrix columnfv(:, t);
this set corresponds to locations (space blocks) that userv
visits at time interval t with positive probability. We then
iterate over usersz ∈ U \ v, and insert a new entry(P ′, f ′

P )
in the Ldcp whenZ = SP (v, t) ∩ SP (z, t) 6= ∅. In the new
entry,P ′ = (P, z) andf ′

P = fP
∏

m∈Z

fv(m, t)fz(m, t). This is

the probability that in time interval t, user nodev encounters
nodez in any of their common possible locations over this
time interval.

3) Search for encounters that increase the cumulative for-
mation probability of existing paths:The computations are
slightly more involved than in step 2 above. This time, we
need to: (a) consider the formation probabilities over timeof
the subpath that arises when the last node that was appended to
the pathP is removed; (b) subtract from them the part of these
probabilities that has already been factored in the computation
of the current formation probability value ofP ; (c) inflate the
remainder of this probability by the probability of an encounter
between the ultimate and the penultimate nodes inP over the
current time interval.

4) Search for visits to locations hosting sink nodes:These
visits enable uploading the measurements to the collection
points, essentially closing a path in listLdcp. This time, for
each entry(P, fP ) ∈ Ldcp, the check is over the positive
values in the columnfv(:, t). If there is a non-zero valuep′ in
any space block hosting a collection pointCP , then(P,CP )
is promoted to a candidate STP with formation likelihood
fP · p′.

On the computational front, the first task, which seeks for
visits of user-nodes at space blocks hosting PoIs, requires

readingL matrix entries per user per time unit, for an overall
complexity of O(TNL). The second task involves reading
O(L) matrix entries inO(N) matricesR per existing possible
DCP per time unit. Since their worst-case count isO(NL),
the overall complexity isO(TN2L2). Finally, the last task
requiresO(S) readings per user in the matrixRu, namely
O(NS) overall. The processing complexity of this stage is
reduced when the hopcount of candidate DCPs is bounded.
Even when the opportunistic protocol does not set a hard
bound on the hopcount of STPs (hence, DCPs), the CO may
choose to filter out STPs with hopcount higher than some
threshold. As the hopcount of permitted DCPs shrinks, fewer
matrices need to be read and fewer checks for redundant paths
have to be carried out during this processing step.

D. Extraction and merging of data-collection paths

The outcome of the earlier step is a list of STPs of the
form [PoIl, UP , CPk] and their formation probabilities. The
data-collection path of the STP corresponds to the user-node
set UP realizing the STP. The important remark is that for
the purposes of the formulations in (P3) and (P4), all STPs
involving PoIl andany permutationof UP together with any
CP ∈ CP, map to the same DCP,i.e., a single member of
DCPl. Hence, if π is the set of permutations ofUP , the
probability qPl thatUP will cover PoIl is

qPl = 1−
∏

dcp∈π,cp∈CP

(1 − f(PoIl,dcp,cp))

At the end of this task, for each PoIl we have a set of
(P, qPl) entries, which could directly be used in the problem
formulation in (P4). Note that the same DCP,i.e., the same
set of users when collectively recruited, may be covering two
or more PoIs with different coverage probabilities.

Example:Figure 2a exemplifies the computation of STPs
and extraction of DCPs for a toy example with two usersu1

andu2 moving in a four-block area with two PoIs and a single
collection point. The campaign durationTc is split into four
time intervals, the user location probabilities in each oneof
those being given by matricesfi, i = 1, 2. Then Table 2b lists
all the STPs that emerge overTc along with the evolution
of their cumulativeformation probabilities. For instance, data
from PoI1 can be collected byu1 at time intervals 2,3 and
4, so that the coverage probability ofPoI1 by u1 over the
duration of the campaign equals 0.952. Ten different STPs
originate from the two PoIs but only four of them yield data-
collection paths. Useru1 covers both PoIs, with probabilities
0.076 and 0.01, respectively, whereasu2 covers onlyPoI2 but
with a significantly higher probability (0.625). In this example,
even if both users are recruited, the expected number of DCPs
is < 1 for the two PoIs.

E. A greedy heuristic for (P4)

Despite the introduction of the coverage probabilities{qPl},
(P4) remains a monotone covering problem with a submodular
objective function so that the findings in [9] are still valid.
Yet the new worst-case approximation ratio∆′ is looser than



1 2

3

4

PoI
1

PoI
2 CP

1

STPs
Time blocks j

MCPs
j = 1 j=2 j = 3 j = 4

PoI2-u2 A2(3,1) = 0.5 0.8 0.94 0.97 -

PoI1-u1 A1(1,2) = 0.4 0.76 0.952 -

PoI2-u1 A1(3,2) = 0.1 0.1 0.1 -

PoI2-u2-cp1 0.1 0.31 0.625 {u2}

PoI -u -u 0.08 0.08 0.123 -PoI2-u2-u1 0.08 0.08 0.123 -

PoI2-u1-cp1 0.01 {u1}
PoI1-u1-cp1 0.076 {u1}

PoI2-u2-u1-cp1 0.08 {u1,u2}

PoI1-u1-u2 0.038 -

PoI2-u1-u2 0.005 -

a. Area and user location probability matricesfu b. STPs, their cumulative formation probabilities, and related DCPs

Fig. 2. Simple example for the extraction of DCPs and the computation of their coverage probabilities: L=2, N=2,|CP| = 1, T=4 and S=4.

its counterpart for (P3) since the uncertainty about the node
mobility results in at least as many DCPs per PoI as in (P3),
i.e., ∆′ ≥ ∆.

Likewise, it is straightforward to adapt the greedy algo-
rithm in Section III-B for addressing (P4): Compared to its

Algorithm 2 Greedy heuristic for sensor selection under
stochastic user mobility

1: Q ← ∅; U ← ∅; Covl = 0 ∀l ∈ L
2: while ∃l ∈ L : Covl < 1 do :

3: P ← arg min
P∈P\Q

[

c(P |U)/
∑

l:Covl<1

qPl

]

;

4: Q ← Q ∪ {P}; U ← U ∪ P ;
5: Covl ← Covl + qPl ∀l ∈ L(P )
6: return Q;

counterpart for (P3), Algorithm 2 features one additional
variableCovl per PoI. The variables log the expected number
of users covering each PoI as the algorithm runs and serve
two purposes. First, they yield the stopping condition for the
algorithm iterations; secondly, they shape the denominator of
the ratio that assesses the utility of each candidate DCP and
points to the next selection. Proposition 3 address the capacity
of Algorithm 2 to approximate the optimal solution of (P4)

Proposition 3. The Greedy algorithm for sensor selec-
tion under stochastic user mobility achieves factor|L|/ρ-
approximation of the optimum cost, where|L| is the number of
PoIs to be covered andρ = minP,l:qPl>0 qPl is the minimum
(non-zero) coverage probability over all (DCP, PoI) pairs.

The proof is given in the extended version of this paper [2].
The worst-case complexity of Algorithm 2 is worse than

that of Algorithm 1 as well. The outer loop in this case may
requireO(|L| · |P|) iterations, as in every such iteration, the
coverage of any PoI may increase by onlyρ. Strictly speaking,
only O(ρ−1 · |L|) iterations are needed, given that each PoI
is fully covered by at mostρ paths. Generally, however,
ρ−1 = O(|P|). In every iteration we need to scan / update
two matrices ofO(|L| · |U|) andO(|L| · |P|) sizes; this yields

a total complexity of orderO
(

|P| · |L|2 · (|U|+ |P|)
)

.

V. EVALUATION OF THE RECRUITMENT ALGORITHM

The aim of this section is to evaluate the performance of
the greedy heuristics in realistic problem settings. Although the
approximation ratios in III-B and IV-E are quite discouraging,

it has been frequently observed in empirical studies of greedy
algorithms that they tend to perform much better on specific
benchmarks than suggested by their worst-case performance
guarantee (see, for example, [8])

A. Performance determinants

The cost of the crowdsensing campaign is determined by:
user-related factors that do not lie, at least originally, under
the control of the CO such as the mobility patterns of users
and the fees they charge for their contributions; the numberof
available collection pointsC for uploading the collected data;
the durationTc of the crowdsensing campaign; and the upper
boundHb on the hopcount of the STPs (resp. DCPs) that cover
the PoIs. The campaign duration is almost entirely within
the discretion of the campaign designer. HigherTc values
imply additional flexibility in the selection of end-user sensors,
within the delay tolerance constraints of the application at hand
each time.

B. Datasets and methodology

Methodologically, the evaluation is carried out over exper-
imental datasets listing sequences of node encounters,i.e.,
the kind of files that are used extensively for the study of
opportunistic forwarding protocols. In particular, two mobility
traces among those made publicly available by the Haggle
project [13], have been used to emulate the way nodes en-
counter with each other and hit the static PoIs and collection
points. The two traces combine mobile and static nodes and
log pairwise encounters between both node types. The first
trace, hereafter called theContenttrace, was collected over an
interval of approximately two months in the city of Cambridge,
UK. It involves 36 mobile iMotes carried by students of the
Cambridge University and 18 fixed nodes located at various
places around the city such as pubs, shop windows, a super-
market and points at the commercial city center. The second
trace, which will be referred to asInf06, was collected within
the dramatically smaller spatial and temporal coordinatesof
the Infocom ’06 conference venue. It features 98 nodes; 78
of them are iMotes carried by conference participants and
the remaining 20 are fixed nodes situated at various places
in the conference hotel such as conference rooms, the bar,
the concierge and the hotel elevators. Both traces have been
preprocessed to cater for contact log asymmetries; more details
about the traces are provided in [13].

For our evaluation purposes, the set of mobile nodes is
mapped to the user setU , whereas (sub)sets of the static nodes
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Fig. 3. Campaign cost (top) and covered PoIs (bottom) under the Greedy
algorithm for the Inf06 (10 PoIs, left) and the Content (6 PoIs, right) traces:
cu = 1 ∀u ∈ U , C=1, variable bounds on STP hopcount.
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Fig. 4. Campaign cost and covered PoIs under the Greedy algorithm for the
Inf06 (10 PoIs) trace:cu = 1 ∀u ∈ U , Hb = 2, variable number of collection
points.

are mapped to the PoI and collection point sets,L and CP,
respectively. We vary the campaign duration by extracting and
working with varying-length parts of the traces. The format
of the used datasets matches scenarios with deterministic
knowledge about the mobility of user nodes. This lets us sep-
arate the performance assessment of the greedy user selection
heuristic from the precision of inferring/computing space-time
paths out of historical data about the users’ mobility patterns
(ref. Sections IV-B and IV-C); the latter is an independent
issue with its own long research thread (for example, see [3]
[4]). In all plots we compare the solution furnished by the
greedy heuristic for (P3) to the solution produced by the
greedy heuristic for (P2),i.e., the selection of users when
the crowdsensing campaign is run over a cellular network,
where end-users can upload data as soon as they collect
them. OPP and CELL, where used, are legend abbreviations
corresponding to the two solutions.

C. Results

1) Sensitivity toTc andHb: In these experiments, we vary
the campaign durationTc and the hopcountHb of the realized
paths. There is a single collection point and all users charge the
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Fig. 5. Campaign cost and coverage under the Greedy algorithm for the Inf06
(top, 9 PoIs) and Content (bottom, 6 PoIs) traces:C = 2,Hb = 2, cmin = 1,
cmax=7.

same unit fee for contributing to the campaign so that its cost
coincides with the number of selected users. The campaign
duration is in the order of hours (days) for the much denser
(sparser) Inf06 (Content) dataset.

Overall, longer campaign durations enable the realizationof
more data-collection paths. When only singleton DCPs are al-
lowed, nodes tend to cover more PoIs over time. The coverage
increases and so does the cost as long as the additional PoIs
are covered by “new” users who are not selected at smallerTc

values. AsTc grows further and more paths emerge letting the
same user cover more than one PoI, the coverage improvement
may come at reduced overall campaign cost, as shown in Fig.
4.a and Fig. 4.b. These trends get even clearer, in particular
for the Content trace, as the bound on the paths’ hopcount is
relaxed. Now the rate at which new paths are realized asTc

grows is faster since the pairwise node encounters give rise
to more two- and three-hop DCPs, some of which collectively
cover several PoIs.

In all cases, the user selection made by the greedy heuristic
costs only marginally more than what the campaign would
cost if carried out over the cellular network infrastructure with
immediate uploading of the collected data.

2) Varying the number of collection points:The increase
of collection points stands as an alternative to lengthening
the crowdsensing campaign duration or letting longer data-
collection paths with respect to the achieved coverage of PoIs.
This improves in all three ways and, of course, under their
combined effect, as Fig. 4.c demonstrates.

The density of encounters in the Inf06 trace is such that,
even with two-hop DCPs, the required number of users for
covering the nine PoIs drops from six (if the campaign cannot
last longer than half an hour) down to three (if the campaign
organizer can wait for an interval of two hours). In all cases,
these scores are almost as good as those achieved by the
greedy algorithm for (P2).



3) Robustness to the distribution of the user fees:In the
previous two sets of experiments, the fee charged by all
users was the same. In this final set, we let users charge
differently their potential participation in the campaign. In
particular, we fix the range of charged fees to[cmin cmax]
and consider two alternatives for the way the user fees are
distributed over this range. In the first one (rand), the user
fees are randomly (i.e., uniformly) distributed; in the second
case (rank), we introduce positive correlation between the fee
and the number of encounters a user gets involved in over the
campaign lifetime. More specifically, we rank users in order
of increasing number of encounters they have over this time.
If rank(u), u ∈ U is the rank of useru in this respect, the fee
she claims is

cu = cmin + rank(u) · (cmax − cmin)/(N − 1)

so that the most “social” user, the one who gets involved in
most encounters, chargescmax, whereas the least social one
chargescmin. This distribution models what might arise over
time in these crowdsensing campaigns, namely attempts of
users to relate their claims to the importancethey anticipate
that they havefor the campaigns.

Looking at the experimentation results, the trend in the
much denser Inf06 trace changes as the campaign spans longer
time intervals (ref. Fig. 5). For campaigns up to 1-hr long, the
algorithm selects the same user sets under both fee distribution
alternatives. The higher campaign cost under the random fee
distribution rather implies that the number of encounters is
not the right cue for the users’ importance/contribution tothe
campaign: namely, the users who actually help cover PoIs
charge lower fees in the second case than in the random
one, hence are among the less “social” in terms of number
of encounters. On the contrary, as the campaign lasts longer,
the algorithm exploits the diversity in the choice of paths and
selects different paths/users in the two cases, in an attempt to
retain the overall cost as small as possible.

In the much sparser Content trace, the number of encounters
appears to be capturing better the relative importance of
users for the campaign. Underrank, the algorithm cannot
avoid choosing some of the more expensive users since these
are the only ones who can cover certain PoIs. Hence, the
campaign’s cost is clearly higher when users consciously
attempt to capitalize on their mobility and frequent encounters
with other users. Only for longer campaigns (∼ 3 hours), does
the algorithm gain enough flexibility in terms of candidate
DCPs to make choices of comparable cost underrand.

VI. CONCLUSIONS

We have looked into the problem of user/sensor selection in
crowdsensing campaigns drawing on opportunistic networking
techniques. we have focused on the coverage dimension of the
crowdsensing campaign design problem since the opportunis-
tic networking layer adds significant complexity and interest,
of both theoretical and practical nature, to it. The underlying
optimization problem has been formulated as a minimum-
cost set cover problem with submodular cost function for

scenarios of deterministic and stochastic user mobility. We
have described practical greedy heuristics and derived their
approximation ratios for the problem. Experimental evidence
suggests that these heuristics perform far better than whattheir
(worst-case) approximation ratios let hope for.
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