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Abstract—We look into the realization of mobile crowdsensing
campaigns that draw on the opportunistic networking paradigm,
as practised in delay-tolerant networks but also in the emeging
device-to-device communication mode in cellular networksIn
particular, we ask how mobile users can be optimally selecte
in order to generate the required space-time paths across th
network for collecting data from a set of fixed locations. The
users hold different roles in these paths, from collecting dta with
their sensing-enabled devices to relaying them across thetwork
and uploading them to data collection points with Internet
connectivity. We first consider scenarios with determinist node
mobility and formulate the selection of users as a minimum-
cost set cover problem with a submodular objective function
We then generalize to more realistic settings with uncertaity
about the user mobility. A methodology is devised for transkting
the statistics of individual user mobility to statistics of space-
time path formation and feeding them to the set cover problem
formulation. We describe practical greedy heuristics for te
resulting NP-hard problems and compute their approximation
ratios. Our experimentation with real mobility datasets (a
illustrates the multiple tradeoffs between the campaign cst and
duration, the bound on the hopcount of space-time paths, and
the number of collection points; and (b) provides evidencehat
in realistic problem instances the heuristics perform muchbetter
than what their pessimistic worst-case bounds suggest.

I. INTRODUCTION

Mobile crowdsensing has emerged over the last dec

as a powerful mechanism for generating collective know
edge about a phenomenon or condition of interest throu
contributions of sensor data by individuals [7]. These dala
may be measurement samples, text and even photograph
video clips and are typically generated by mobile devicdh wi
sensing capabilities such as smartphones. The aggregatibn

processing of these data gives rise to diverse servicesngn

data providers announce the fees they charge for conmiputi
to the data collection campaign and it is then up to the servic
provider to recruit those who bear the highest value for rgone
for the its service.

Interestingly, the majority of the current literature as®s
that the end-users use the cellular network resourcesdns-r
ferring data to the SP as soon as these are generated by their
devices’ sensors. We argue that there are at least three good
reasons not to do so —and instead prefer alternative transpo
alternatives for the sensor data. Firstly, this practicelies
a significant cost in terms of battery and data subscription
plan consumption; if this cost is rationally reflected inke t
fees the users claim, it raises considerably the cost of the
crowdsensing campaign. Secondly, and depending on the type
of the collected datae(g, the quality photos sought in [11]),
crowdsensing campaigns generate additional workloadhi®r t
cellular network. This workload is anything but negligible
considering the projected scale of these campaigns by the
time crowdsensing reaches maturity and that many of these
campaigns will be taking place during the network busy hours
Thirdly, on a more constructive note, there are alternative
transport paradigms for sensor data that can alleviateethes
concerns. Opportunistic networking is viewed as a prormgisin
o emplement to the cellular networks in different respeets,
5‘((_]; offloading delay-tolerant traffic load from them [10]. On
I'he other hand, the device-to-device (D2D) communications
ode €.g, [6]) essentially introduces a multihop opportunis-
C Ilayer straight into the cellular network architectutepugh

(0] ; . ; X i
which mobile devices can communicate directly, without the

intervention of base stations.

g The realization of crowdsensing over an opportunistic net-

from traffic jam prediction and parking space managementworking transport layer, where the assumption of contirsuou

environmental monitoring and social journalism.
Mobile crowdsensing implementations usually involve ér

connectivity to the Internet breaks, radically transforthe
epossible roles and value of end-users. Hence, a user who

main actors: the end-users that contribute the sensor dsgémses data from various locations may not necessarily have
(data provider}, the Service Provider (SP) processing tha way to transfer them by her own meaosly to the SP;
collected data to generate a service out of them, and the emthereas users who do not sense any data themselves, may
users that subscribe to this serviaaia consumejs most bear high value for a crowdsensing campaign as relays of
often through a mobile application running on their devicedata of other users thanks to their encounters with them.
A common challenge for most of these implementations @ur paper looks into the problem of sensor selection in this
to identify those end-users who can contribute most value fimdamentally different setting. We formulate the undiedy

the service and motivate their participation. In our wohe t optimization problem, analyze its theoretical propertiasd
motivation part is served by monetary incentives. The sengwopose practical algorithms for solving it.



A. Related work « We formulate the problem under both deterministic and

Mobile crowdsensing and the closely-related paradigms stochastic user mobili_ty as instances ofthe r_‘ninimum.cost
such as participatory sensing and human/people-centis se ~ Set cover problem with submodular objective functions
ing have motivated much research work over the last decade. (Sections Ill-A and IV-A). _ -
For recent surveys of this work and the remaining open* We describe a method for computing the probability
challenges, the interested reader is referred to [7] anfl [14 with which different space-time paths are realized across

On the contrary, much sparser is the literature on the the opportunistic network out of data about the nodes’
realization of crowdsensing over opportunistic netwoi& mobility patterns in the past (Sections IV-B and IV-C).
are aware of three studies under this thréad,[15] [16] [17].  * Since the problem is NP-hard, we propose practical
Common to all of them is the assumption that the sensed data 9reedy heuristics and derive the approximation ratios they
are generated randomly or periodically by the mobile users, @achieve (Sections Ill-B and IV-E).
as the case is with health- or fitness-monitoring applicatio * We evaluate the overall approach over experimental node
none of them considers location-dependent data raisingreov ~ Mobility datasets to demonstrate the multiple tradeoffs
age concerns. The objective then, as with the original nguti between the campaign parameters and provide evidence
and data dissemination scenarios in opportunistic netsydsk that the performance of the greedy heuristic in real
to deliver the maximum amount of these data to the sink(s), Problem instances is much better than what their worst-
as fast as possible and with minimum replication overhead. ~ Case analysis implies (Section V).

More specifically, in [16] the mobile sensing nodes are As in [15]- [17], our work considers the general mobile
distinguished into those acting exclusively as data prngd crowdsensing paradigm rather than a particular applioatio
and those high-end ones also serving as simkg, (upload and draws on contact traces to evaluate the performance
information to the Internet). The paper proposes two héarisof the proposed algorithms. However, contrary to [16] and
schemes for the delivery of sensed data to the sinks, whidY], in our case there are certain locations that have to
are shown to be performing comparably in terms of messalge sensed/covered. Our recruitment process, unlike the one
delivery probability and delay, and complementarily witiin [15], explicitly considers the coverage of and the fees
respect to the management of the nodes’ storage space elmarged by end-users in the recruitment process. Moreover,
message overhead. In [17] the setting is similar only notlie payments are monetary and made to all nodes contributing
the nodes decide strategically upon encounters with otHerthe delivery of the sensor data to the sinks, as eitheiosens
nodes whether they will contribute to the forwarding of aodes or relays. Consequently, relevant performance eaetri
particular data item towards the single network sink or ndo our work are the campaign’s coverage and cost rather than
The authors assume that the sink rewards with credit orilye message-related ones (delivery, delay, overhead)fosed
nodes that deliver messages to it; hence, they can approasbessing more typical DTN applications.
the pairwise encounters as instances of two-person caijeera
games, during which the two nodes need to identify which
set of messages are worth exchanging with each other. TeySystem model
apply the Nash bargaining Theorem to obtain the optimal The two main actors in the model we consider are the mo-
solution to these games and propose a greedy algorithm thad end-users and an entity that organizes the mobile crowd
iteratively selects th_e pair of files maximizing the Ut"'tYSensing campaign, hereafter called the campaign organizer
of the exchange, within the constraints set by the batte¢oy. The CO is interested in collecting data from a set of
resources of the devices. Finally, the work in [15] lies elos pojnts of Interest (Pols) within a time intenval , ,]; without
to the participatory sensing framework in [12], by incluglin 555 of generality, assunte = 0 andt, = T.. These data can
an explicit sensor_recrwtment phase, initiated well inaatbe “be collected by mobile users carrying sensing devices ag lon
of the data collection phase. Contrary to the other two stydi 54 they accept to participate in the crowdsensing campaign.

the sensed data are location-dependent but this depentenggactically, this may imply downloading and running a custo
accounted for indirectly via the recruitment phase: theasodgpjication on their smartphones.

Il. SYSTEM MODEL AND PROBLEM FORMULATION

selected for the sensing task are those visiting more fréue | et £ = {;,,1,,...,1;}, be the set of Pols antf =
and for longer time intervals the locations of interest,fas is {u1,uz,...,uxn} the set of mobile users who could potentially
inferred from historical data about the node mobility patte e engaged in the crowdsensing task. Practicaflycould
B. Our contributions coincide with the full set of mobile users traversing theaare

f interest or a subset of those fulfilling some criteria sash

We address the problem of user/sensor selection in the : : .
hé possession of a sensing-capable smartphone. The mobile

context of mobile crowdsensing campaigns that draw on the S .
. . ; . - users move in different manner so that each usggwisits
opportunistic networking paradigm. The campaign aims at th

) : . .~""a subset of PolsS, C L, k = 1,2,...,N over timeT.,.
collection of location-based data, while users, depending In parallel mav encounter another user. particinatin
their mobility patterns, may undertake different role,, P Uk y P pating

sense or relay the Or'gmal gensor data. To the COI’]tI’IbSltlonlm general, the CO entity does not need to coincide with the@Ry but
of our paper count the following: may be a third entity to which the user selection task is deém



the Pols and the data collection points.
With this notation at hand, the optimization problem the CO
u'% seeks to solve can be written as:

x>

contact involved  contact contact 158
id nodes start  end
time  time
con, u; oty te
con, U G by Ge
cony Uy ug  ty t3e
con, u, oty te
cong U Uyt te
cong U, [
con, u, Iy t
cong Uy u, t
cong U, Ug g, toe
Ny, U3 & tioe
con;;  Us Gty tie

minimize Z TuCu
ueld
s.t. > Jlzu=z1viec (P1)
peDCP, uep
x, € {0,1}

’V : measurement X : pair-wise node encounter

The set of L constraints in the second line ¢f1) require
that the selection of users by the CO needs to be reali&ing

Fig. 1. Example of a crowdsensing campaign with a singleectiin point |eastone of the data-collection paths for each Pol.
over an opportunistic network made up by the encounters enletfh side.

Data from Poll; are uploaded by the same user who collected them. Data \johjle crowdsensing over the cellular infrastructure: a
from all other points/s, I3, andls reach the collection point with the help

of the intermediate users; andus, who do not themselves collect any data.pIaUS|bIe benchmark

in the crowdsensing campaign, and exchange with her data;rhe mobile crowdsensing implementation over multihop

from any Pols they have visited up to that time (essentiaIP portunistic networks generahzes Its more common ofmsrat

. ver the cellular network infrastructure. There, a mobseru
subsets ofSy, and Sy, respectively). Eventually, the data irectly uploads any data it collects from Pols through the
from the different Pols need to reach the server(s) of the dj(ﬂ' y up y 9

(SP) at the fixed network and this is possible through a ﬁrleﬁtwork radio access po!ne.g, 2/2.5G base station, SG
: . odeB or LTE eNB) she is attached to. The data-collection
CP = {cp1,cp2, ...,cpc} of C = |CP| collection points such

&aths are singletons and the respective STPs are the ordered

as WiFi APs scattered across the area of interest and asleessi _. . .
to the campaign participants free-of-charge pairs emerging from the DCPs when these are prefixed by the

Each useru charges a feer, for her participation in Pol id. Each usemy is univocally linked to a set of Pols,

the campaign accounting for the extra consumption of hgf“’ it can coverindependentljrom other users and the user

. o . selection task simplifies to the familiar minimum-cost sater
battery but also potential cognitive effort and time denehd 1Sk simp -
. o ) roblem with fixed user-specific cost values.
by the data collection process. This is communicated to the
CO in response to its campaign announcemerd, over

a crowdsourcing-type of interface.¢, [1]). The CO then minimize Z Ty Cus

seeks to identify and recruit those users who will collesdtiv weld

gather the data from all Pols at the minimum possible cost. st Z c.>1Viel (P2
To formulate the problem the CO faces, consider the set wics. -

of Pols. Data from every Pol € £ can reach the data o € {0,1}

collection points through a set of space-time paths (STPs)
realized through the mobility of nodes and their time-oeder It is straightforward to see that:

encounters within timé&,.. Each STP involves the user servinq3 " . . .
) Proposition 1. The optimal solution of (P2) serves as a tight
as the sensing node and zero or more other users relaylm

the data till they reach anyone of the collection points. Focr)\%er bound to the optimal solution of (P1).
example, in Fig. Ip1 = {l1,u1, 1}, p2 = {l1,u1,us,c1} and  Proof. Consider the optimal solution of (P2)P2),,:, con-
ps = {l1,u1,uq,us,c;} are three different STPs, over whichsisting of one or more users who together cover all Pols at
data from Pol;; can reach the collection point. In all three minimum cost. When we replace the cellular network with
cases, the data are collected by usebut relayed by different an opportunistic one, the users that can upload data to the
nodes before being eventually uploaded:to collection point(s) are, in the general case, only a sulesetn(
the null one) of(P2),,,. Hence, more users are needed to
serve as data relays and/or uploaders and the optimal@oluti
For the purposes of our modeling formulation, it is comef (P1), (P1l)opt # (P2)opt With [(P1)ope] > [(P2)optl
venient to consider the sequences of users woitectively and .  py),  cu > D e(pa),,, Cu- Clearly, (PL)oy will
realize these STPs. To facilitate notation, we call thiaita- coincide with(P2),,,, if the set of users if{P2),,; suffices
collection pathsand abbreviate their subset that realizes STRs generate valid STPs for all Pols, without the need for
for a particular Pol as DCP,. In the earlier example of Fig. additional users. An extreme scenario is thadlt users in
1, the user sequencedsi;}, {u1 us}, and {u; ug uz} are (P2),, encounterthemselveghe collection point(s) within
data-collection paths ilDCP,, corresponding to the STPsthe duratioril,. of the crowdsensing campaign and after hitting
p1, p2, and ps, respectively. Note that the DCP modelinghe Pols they cover as part ¢P2),,;. In more realistic
construction already entails the chronological order o thscenarios, the two solutions also coincide when the timerord
involved encounters and abstracts away the actual locafionof node pairwise encounters is such that a non-empty subset

B. Problem formulation - deterministic mobility



x € (P2)op can upload to the collection points data fromattractive for problem instances such as Vertex Cover, &her
the residual(P2),,: \ = users, after encountering them and\ = 2, the number of variables per constraint equation in (P3)
copying their data. Since these scenarios are generaflipfea equals the number of DCPs per Pol. This is highly variable

the bound is tight. O

Ill. USER RECRUITMENT THROUGHDCP SELECTION. A
GREEDY HEURISTIC

A. Minimum-Cost Set Cover (Re-)Formulation

We can draw on the definition of data-collection paths
re-formulate the problem (P1) as a generali&=l Covering
problem, involving only linear constraints (over integerriv
ables) along with a submodulaost functionover feasible
solutions. In particular, defin® = U, DCP, to be the set
of all DCPs; each elemen®® € P constitutes a DCP for at

and grows fast with the number of mobile usé¥sand the
hopcount of the respective STPs.

Therefore, a practically more promising alternative is-pro
vided by the following greedy heuristic.

l%Igorithm 1 Greedy heuristic for sensor selection under

deterministic user mobility
1 Q«0; U«
2: while EJZEE:DCTQQ:@dO:

3 P i PIU)/|L(P)||;
arg min_[c(P|U)/|L(P)]];
Q+ QU{P} U+ UUP;

4:

least one Pol fromZ. Under this definition, the CO seeks 5. return Q:

Q C P of minimum total cost

Z(Q)

>

u€(UpeoP)

(1)

Cu,

such that, for every € L, there exists at least onB €
Q N DCP,. Notice that this is indeed a minimum coSet
Covering formulation for the proble) wherein we choose
data-collection paths to “cover” the Pols. The most sigaific
feature of this formulation is the objective functioi(-)

in (1); it is a submodularfunction over the space of feasible

solutions. In particular, for any two subsefs, 9, of P, Z
satisfies:Z(Q1 U Qq2) + Z(Q1 N Q2) = Z(Q1) + Z(Q2).
Introducing an additional binary variable;p for each

P € P, the problem can be stated as an Integer Linear P

gram involving only linear constraints and a linear objesti
function, as follows:

minimize Z CuTu

uelU

st. Y yp>=1 WleL  (P3)
PEDCP,
Ty —yp >0 VP eP,YVueP

xy,yp € {0,1} VPP Vuel

The heuristic is a straightforward adaptation of the well
known greedy Set Covering heuristic by Chvatal [5], to the
case of a submodular cost function. In each step the algorith
selects the DCP minimizing the ratio of the additional fees
that have to be paid to new users involved in it, over the set
of new Pols it covers with respect to already selected DCPs.
In describing the algorithm, we have definédP) = {I <
L|P e DCP,}, to be the set of Pols covered by pdthe P
andc(P|U) =3 ,cp\pcu foranyU CU andP € P to be
the excess cost related to usersArbut not inU.

Proposition 2 shows that Algorithm 1 achieves a fa¢tijr
pproximation,i.e., it is independent of the input seg, of
ata-collection paths and the cardinalities {dPCP,}, | €

L. This renders the greedy algorithm more robust than the
primal-dual one of [9] in terms of worst-case performanae, i
a situation where we might need to gener®eccording to
exogenous restrictions (time, processing power, memdhg.
actually generated familp affects the cost of the optimum
solution to the problem;(Q*), but the algorithm’s worst-case
performance depends solely ofQ*) and |L|.

Proposition 2. The Greedy algorithm for minimum cost Set

The first set of constraints ensures that at least one d&@ver with submodular cost function achieves factgi-

collection path is chosen for every Pble L. The second
set of constraints forces the selection of usetr U (z, = 1),
whenever a pattP with v € P is chosengp = 1).

B. A greedy heuristic for (P3)

(P3) comes under the category of NP-hard problems; he
the question arising is what can be said about its approxi

bility and what could be an acceptable algorithm for (sul%-
optimally) tackling it. To begin with, for the generic Set
Cover with a submodular cost function, the recent primal-

dual algorithm of Koufogiannakis and Young [9] yieldsa

approximation, wheré\ corresponds to the maximum numbe

of variables in each linedicovering” constraint (first set of
constraints in (P3)). Whereas this approximation is paldidy

2|t may also be considered as an — equivaleHiitting SetProblem, wherein
we seek a solution tha&hits” every setST P, for everyl € L.

approximation of the optimum cost, whefg€| denotes the
number of ground elements (in our case, Pols) to be covered.

Proof. The proof amounts to showing that, in every step, the
Greedy algorithm increases the current (partial) soltgioast

"B at mostc(Q*), where@* denotes the optimum solution.

nce the algorithm covers at least one more point fdmat
ach step, the result follows.
For each steps, let P; € P denote the path chosen at step
s. Accordingly, defineQ; = {P1, P, ..., Ps} to be the partial
solution after steps, andU; = Uy <P, and letL; C L be
fhe subset of Pols that are covered after stepinally, set
QO — U() - LO - @

For s = 1, our argument holds,e., c(P; |0)/|L(P)| <
c(Q*), because, otherwisd?, does not minimize the ratio
of cost over number of covered points. At any stepa



sub-problemremains to be solved, concerning \ L;_;| the Pol and encounter with each other. As a result, one
Pols, whered £\ Ls_1| < |£\ Ls—2|. Moreover, each of the plausible objective emerging for the recruitment process i
remaining paths® € P\ Q,_; has cosic(P|Us_1) < ¢(P). the minimization of the payments that have to be made to
This sub-problem has an optimum soluti@i_,, of total the selected nodes to achieve a probabilistic guarantegt abo
cost c(Q*_, |Us—1) (we abuse slightly the notation(|-) the coverage of the Pols.

here). Then,c(Q*_;|Us—1) < ¢(Q*), becauseQ* is also More formally, the optimization problem faced by the CO
feasible for the sub-problem. The paf), chosen at step, entity can be written as:

must satisfyc(P, | Us_1)/|L(Ps) \ Ly_1| < e(Qi_, | Us_1) o

for, otherwise, it does not minimize the ratio of cost over MiNiMize Z Culy,

number of Pols that it covers. Then, to conclude the proof, u€U
if O = {P1,P,,...,Pq} is the solution output by the s.t. Z yp-qr>1 VleL (P4)
algorithm, we have: PEDCP,
o Ty —yp >0 VP € P,Vu € P
C(Q):ZC(PS|U571) l‘u,yPE{O,l} VPeP,Vueld
s=1 Compared to (P3), the first set of constraints now demand that
1<l theexpectediumber of paths covering each Pol be at least one.
< ZC(Qz_l |Us—1) - [IL(Ps) \ Ls—1] Practically, thecoverage probabilitieggp;} can be computed
s=1 with the help of information about the nodes’ mobility in the
12l past. Such information may come from logs of the GPS or
<e(Q7) x D |L(P)\ Lya| = [£] - ¢(Q7) other positioning systems exported by the applicatiorifitse
s=1

from other sources such as check-ins in online (locatiseta
where the latter equality stems from the fact thafP,) \ social networking sites [4].
Ls_1| > 1, for any steps = 1,...,|Q|. That is, the algorithm ) N
covers at least one new Pol in each step. The sum has tofheRepresentation of node mobility data
totalling | L|. O The first step in this direction is a concise representation
A simple implementation of the Greedy algorithm describ of the n_ode.s’ mo_bility profilles. To .t.hi.s enq we partition the
, &Vo main dimensions of this mobilityi,e., time and space,
above reqU|resO(|£|2(|u| + |P|)) steps. The outer 100p jhio T intervals ands blocks, respectively, and represent each
requiresO(|£|) iterations in the worst-case; in each iteratioyser with anSx7I' row-stochastic user location probability
we need to scan / update two matrices(@f|L| - [/|) and matrix f,; each element,(s,t) represents the time-varying
O(|L| - |P|) sizes, respectively. probability that the uset, lies in space blocks during time
interval ¢.
The number of space blocks is determined by the size of
the area of interest and the radio coverage of the Pols and
A. Annotating DCPs with coverage probabilities sinks, i.e., the distance over which measurement data can be

The analysis in section II-A is subject to the strong assumgollected from (resp. uploaded to) them. The assumption is
tion that the user trajectories over the area of interestbgan that no more than one Pol or sink lies within a given space
perfectly known/predicted. This is the case with only afedi block so thatS > L. The number of columng’ is computed
set of opportunistic network instances such as those eehli2s 7' = 7c/ts, wheret, equals the time step over which
by track-based transportation system nodes. the historical data are aggregated and processed to dbave t

On the contrary, in almost all envisaged realizations dme-dependent probability distribution of the node’sdions
mobile crowdsensing, there is no control over the way thie(s,t),1 < s < S. The value oft, is either chosen a
end-user nodes move. Nevertheless, there is almost alwR{iri or indirectly induced by the frequency of the locatio
structure in their mobility patterns and multi-timescalerip eports/measurements, as exported by GPS or other pasgion
odicities, induced by their daily routines and social dtite technologies. In general, smalléx values result in higher
(e.g, trips from home to workplace and back and visits tBrecision but also higher storage and processing requiresme
friends, relatives and recreation places). The challengéne for the node mobility representation.
recruitment phase of the campaign is then to take advantage i , i .
of historical information about these mobility patternsa® ™~ Computation of STPs and their formation probabilities
to optimize its selection of users. This step involves the derivation of space-time paths of the

Technically, the space-time paths between Pols and colléarm (Pol;,Up, CPy), whereUp C U; namely, space-time
tion points are realized probabilistically rather thanedetin- paths that originate from some Pol, end at a collection point
istically over the lifetime of the campaign so that a giveand are realized over a subset of user nodes. This computatio
DCP P covers a Pol, say, with probability gp; that depends is carried out iteratively over successive time intervaisang
directly on whether the involved mobile nodastually visit on the user location probability matricdg’,,} and builds a

IV. ACCOUNTING FOR THE UNCERTAINTY OF NODE
MOBILITY



list Lq., Of all space-time paths that can emerge with nomeadingL matrix entries per user per time unit, for an overall
zero probability. At any point in timeL,., lists a number complexity of O(TNL). The second task involves reading
of “open” paths of the form(Pol;,Up), a subset of which O(L) matrix entries inO(N) matricesR per existing possible
will eventually “close” by the end of the campaign with e&DCP per time unit. Since their worst-case countO&N L),
suffix node corresponding to a collection point; these aee tthe overall complexity isSO(TN2L?). Finally, the last task
space-time paths of interest. Besides the derivation of thequiresO(S) readings per user in the matri®,, namely
paths as such, this processing step continuously updaes tiW(N.S) overall. The processing complexity of this stage is

cumulative formation probabilities. reduced when the hopcount of candidate DCPs is bounded.
Technically, the following four processing steps are régp@a Even when the opportunistic protocol does not set a hard
upon each time interval. bound on the hopcount of STPs (hence, DCPs), the CO may

1) Search for visits of user-nodes at space blocks hostingoose to filter out STPs with hopcount higher than some
Pols: Such visits imply that data from a Pol, saycan be threshold. As the hopcount of permitted DCPs shrinks, fewer
collected from a user, say, at time intervak and correspond matrices need to be read and fewer checks for redundant paths
to a non-zero value of,(l,¢). Two possibilities exist: have to be carried out during this processing step.

o This is the first timeu visits I: then a new DCP entry : : :
D. Extraction and merging of data-collection paths
[(Pol;,w), fu(l,t)] is added to the list of possible DCPs. ging P

. There is already an entfyPol;, u], fp) in the list due to The outcome of the earlie_r step is_ a list of _S_T_Ps of the
a visit of u at space block in the past: then the second©rm [Pol;, _Up,CPk] and their formation probabilities. The
field of the entry (the formation probability of the DCP) jdata-collection path of the STP corresponds to the usee-nod
updated tal — (1— fp)(1— fu(l,t)). This value equals the set Up realizing the STP. The important remark is that for

probability thatu has run acros®ol; up to and including the purposes of the formulations in (P3) and (P4), all STPs
the intervalt. involving Pol; andany permutatiorof Up together with any

2) Search for encounters giving rise to new possible pathC'P € CP, map to the same DCRe, a single member of

For each entry( P, fp) € Lqp, We are considering the mostégﬁbimence’tﬁxl}s J\:ﬁ Csé)(?/tefzjgirgutatlons dp, the
recently added user-node and the set of positive values” Yari P !

Sg(v,t) C S'in its location propability matrix columif, (:, t); gri=1-— H (1 = fiPon.dep.cp))

this set corresponds to locations (space blocks) that user depen cpeCP

visits at time interval t with positive probability. We then

iterate over users € U \ v, and insert a new entryP’, 1) A]tD the en(: .Of th'i. tﬁSk’ flzrd?adgl Pk;jlwe zavetha set b(I)f
in the Ly, whenZ = Sp(v,t) N Sp(z,t) # 0. In the new (P, gp1) entries, which could directly be used in the problem

P ;o .. formulation in (P4). Note that the same DGR, the same
entry, P’ = (P, z) andfp = fr mlgz folm 1) fz(m, 7). This is set of users when collectively recruited, may be covering tw
the probability that in time interval t, user nodeencounters or more Pols with different coverage probabilities.
node z in any of their common possible locations over this Example:Figure 2a exemplifies the computation of STPs
time interval. and extraction of DCPs for a toy example with two users

3) Search for encounters that increase the cumulative faindu, moving in a four-block area with two Pols and a single
mation probability of existing pathsThe computations are collection point. The campaign duratidh. is split into four
slightly more involved than in step 2 above. This time, wéme intervals, the user location probabilities in each ofie
need to: (a) consider the formation probabilities over tiohe those being given by matrice$, i = 1,2. Then Table 2b lists
the subpath that arises when the last node that was appendeglitthe STPs that emerge ov&. along with the evolution
the pathP is removed, (b) subtract from them the part of thessf their cumulativeformation probabilities. For instance, data
probabilities that has already been factored in the contiputa from Pol, can be collected by:;, at time intervals 2,3 and
of the current formation probability value @, (c) inflate the 4, so that the coverage probability &fol; by u; over the
remainder of this probability by the probability of an enoter duration of the campaign equals 0.952. Ten different STPs
between the ultimate and the penultimate nodeB iover the originate from the two Pols but only four of them yield data-
current time interval. collection paths. Uset; covers both Pols, with probabilities

4) Search for visits to locations hosting sink nod&$iese 0.076 and 0.01, respectively, whereascovers onlyPol, but
visits enable uploading the measurements to the collectimith a significantly higher probability (0.625). In this exrale,
points, essentially closing a path in li.,. This time, for even if both users are recruited, the expected number of DCPs
each entry(P, fp) € Lgp, the check is over the positiveis < 1 for the two Pols.
values in the columif,(:, t). If there is a non-zero valug in o
any space block hosting a collection po@P, then(P,cP) E- A greedy heuristic for (P4)
is promoted to a candidate STP with formation likelihood Despite the introduction of the coverage probabilifigs; },
fr-p. (P4) remains a monotone covering problem with a submodular

On the computational front, the first task, which seeks fabjective function so that the findings in [9] are still valid
visits of user-nodes at space blocks hosting Pols, requiet the new worst-case approximation rafld is looser than



T ; > STPs = jzleme blocks]j — =
[ 0 04 06 0 '8:| A i Pol,-u, A3.)=0.5 0.8 0.94 0.97

MCPs

0.5 05 04 0.1 : Pol,-u, A(12)=04 0.76 0.952
0 01 0 0 Pol, ' Pol,-u, A(3.2)=0.1 0.1 0.1

...................

Pol,-u,-cp, 0.1 031 0.625 {u,}

03 0 0 0.1 3 S Pol,-uyu, 0.08 0.08 0.123 -
r o 0 0 01 ‘ : 4 Pol,-u,-cp, 0.01 {uy,
0 02 0 0 ; Pol,-u;-cp, 0.076 (.
- i | Pol,-u,-u, -] 0.08 {u,u,}
E=los 05 07 05 Pol, | CP,y {;’011,‘—uL,l—utp] 0.038 e
0.5 02 0.3 05 : Pol,-u,u 0.005
a. Area and user location probability matricés b. STPs, their cumulative formation probabilities, anchtedl DCPs

Fig. 2. Simple example for the extraction of DCPs and the adgatfpn of their coverage probabilities: L=2, N=Z;P| = 1, T=4 and S=4.

its counterpart for (P3) since the uncertainty about theenod has been frequently observed in empirical studies ofdyee

mobility results in at least as many DCPs per Pol as in (P3lgorithms that they tend to perform much better on specific

ie, A’ > A. benchmarks than suggested by their worst-case performance
Likewise, it is straightforward to adapt the greedy algaguarantee (see, for example, [8])

rithm in Section 1lI-B for addressing (P4): Compared to it performance determinants

Algorithm 2 Greedy heuristic for sensor selection under The cost of the crowdsensing campaign is determined by:
stochastic user mobility user-related factors that do not lie, at least originaliyder

10«0 U« 0 Comy=0VieLl the control of the CO such as the mobility patterns of users
2: while 3’1 eL: C"ovl <1do: and the fees they charge for their contributions; the nurober

) . ) available collection point€’ for uploading the collected data;
¥ P arg pglﬁr\lg o(P| U)/l:c%a qu}’ the duration’,. of the crowdsensing campaign; and the upper
4 Q<+ QU{P}; U+~ UUP; boundH; on the hopcount of the STPs (resp. DCPs) that cover
5: Cov; < Cov; + qp; Yl € L(P) the Pols. The campaign duration is almost entirely within
6: return Q; the discretion of the campaign designer. Higlér values

imply additional flexibility in the selection of end-usemnsers,
counterpart for (P3), Algorithm 2 features one additiondYithin the delay tolerance constraints of the applicatibineand

variableCou; per Pol. The variables log the expected numb&ach time.

of users covering each Pol as the algorithm runs and sefye patasets and methodology
two purposes. First, they yield the stopping condition foe t
algorithm iterations; secondly, they shape the denomirafto
the ratio that assesses the utility of each candidate DCP
points to the next selection. Proposition 3 address theciigpa
of Algorithm 2 to approximate the optimal solution of (P4)

Methodologically, the evaluation is carried out over exper
imental datasets listing sequences of node encouritets,
QHg kind of files that are used extensively for the study of
opportunistic forwarding protocols. In particular, two bility
traces among those made publicly available by the Haggle
Proposition 3. The Greedy algorithm for sensor selecproject [13], have been used to emulate the way nodes en-
tion under stochastic user mobility achieves factdii/p- counter with each other and hit the static Pols and collectio
approximation of the optimum cost, whés is the number of points. The two traces combine mobile and static nodes and
Pols to be covered and = minp,.,,, -0 gpi is the minimum log pairwise encounters between both node types. The first
(non-zero) coverage probability over all (DCP, Pol) pairs. trace, hereafter called th@ontenttrace, was collected over an

S . . interval of approximately two months in the city of Cambrédg
The proof is given in the extended version of this paper [ZHJ]K. It involves 36 mobile iMotes carried by students of the

The WOI‘S'[.-C&SG complexity of Algorithm _2 IS worse thal&ambridge University and 18 fixed nodes located at various
that of Algorithm 1 as well. The outer loop in this case ma}ﬁlaces around the city such as pubs, shop windows, a super-
require O(|£| - [P|) iterations, as in every such iteration, the, et and points at the commercial city center. The second
coverage_?f any Pol may increase by oplyStrictly speaking, yace  which will be referred to dsf06, was collected within
pnly O(p~" - |£]) iterations are needed, given that each P e dramatically smaller spatial and temporal coordinafes
|s_1fully covered by at mostp paths. Generally, however,y,o nfocom '06 conference venue. It features 98 nodes; 78
P = O_(|P|)' In every iteration we need_to scan /_updatgf them are iMotes carried by conference participants and
two matrices of0(| L[ - [U|) andO(|L|- [P|) sizes; this yields o remaining 20 are fixed nodes situated at various places
a total complexity of ordeO( |P| - [L[* - ([U] + |P])). in the conference hotel such as conference rooms, the bar,
the concierge and the hotel elevators. Both traces have been
preprocessed to cater for contact log asymmetries; moadiglet

The aim of this section is to evaluate the performance about the traces are provided in [13].
the greedy heuristics in realistic problem settings. Alifjothe For our evaluation purposes, the set of mobile nodes is
approximation ratios in IlI-B and IV-E are quite discounagi mapped to the user skt whereas (sub)sets of the static nodes

V. EVALUATION OF THE RECRUITMENT ALGORITHM
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are mapped to the Pol and collection point s&tsand CP,
respectively. We vary the campaign duration by extractingj agrqys is faster since the pairwise node encounters give rise

working with varying-length parts of the traces. The forma}y yore two- and three-hop DCPs, some of which collectively
of the used datasets matches scenarios with determinigliger several Pols.

knowledge about the mobility of user nodes. This lets us SeP all cases, the user selection made by the greedy heuristic

arate the performance assessment of the greedy usermle%sts only marginally more than what the campaign would
heuristic from the precision of inferring/computing spdiree

paths out of historical data about the users’ mobility pate
(ref. Sections IV-B and IV-C); the latter is an independent
issue with its own long research thread (for example, see %3{]
[4]). In all plots we compare the solution furnished by th

greedy heuristic for (P3) to the solution produced by the
greedy heuristic for (P24)e., the selection of users when
the crowdsensing campaign is run over a cellular netwo
where end-users can upload data as soon as they collé
them. OPP and CELL, where used, are legend abbreviation

corresponding to the two solutions.

C. Results
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Fig. 5. Campaign cost and coverage under the Greedy algofdhthe Inf06
(top, 9 Pols) and Content (bottom, 6 Pols) trag@ss 2, Hy, = 2, ¢ypin = 1,

Cmaz=T.

same unit fee for contributing to the campaign so that it¢ cos

coincides with the number of selected users. The campaign
duration is in the order of hours (days) for the much denser
(sparser) Inf06 (Content) dataset.

Overall, longer campaign durations enable the realizaifon
more data-collection paths. When only singleton DCPs are al
lowed, nodes tend to cover more Pols over time. The coverage
increases and so does the cost as long as the additional Pols
are covered by “new” users who are not selected at sngller
values. AsT, grows further and more paths emerge letting the
same user cover more than one Pol, the coverage improvement
may come at reduced overall campaign cost, as shown in Fig.
4.a and Fig. 4.b. These trends get even clearer, in panticula
for the Content trace, as the bound on the paths’ hopcount is
relaxed. Now the rate at which new paths are realized@’ as

cost if carried out over the cellular network infrastruetwith
immediate uploading of the collected data.
2) Varying the number of collection point§he increase
collection points stands as an alternative to lengthgnin
e crowdsensing campaign duration or letting longer data-
collection paths with respect to the achieved coverage tf. Po
r'ﬁhis improves in all three ways and, of course, under their
ombined effect, as Fig. 4.c demonstrates.

Qs’l-{‘he density of encounters in the InfO6 trace is such that,
even with two-hop DCPs, the required number of users for
covering the nine Pols drops from six (if the campaign cannot
last longer than half an hour) down to three (if the campaign

1) Sensitivity tal, and H,: In these experiments, we Varyorganizer can wait for an interval of two hours). In all cases
the campaign duratiofl, and the hopcountl;, of the realized these scores are almost as good as those achieved by the
paths. There is a single collection point and all users ehtirg  9reedy algorithm for (P2).



3) Robustness to the distribution of the user febsthe scenarios of deterministic and stochastic user mobilitg W
previous two sets of experiments, the fee charged by &kve described practical greedy heuristics and deriveid the
users was the same. In this final set, we let users chagmproximation ratios for the problem. Experimental evigen
differently their potential participation in the campaigim suggests that these heuristics perform far better than thbait
particular, we fix the range of charged fees|tQ.,i, cmaz] (WOrst-case) approximation ratios let hope for.
and consider two alternatives for the way the user fees are
distributed over this range. In the first onear{d), the user
fees are randomlyi.e., uniformly) distributed; in the second M. Karaliopoulos and I. Koutsopoulos acknowledge the
case fank), we introduce positive correlation between the fegupport of the ERC08- RECITAL project, co-financed by
and the number of encounters a user gets involved in over faeeece and the European Social Fund through the Education
campaign lifetime. More specifically, we rank users in ordénd Lifelong Learning Operational Program of the Greek
of increasing number of encounters they have over this tinfdational Strategic Reference Framework 2007-2013.

If rank(u),u € U is the rank of uset in this respect, the fee
she claims is
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