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Abstract—Distributed caching architectures have been pro-
posed for bringing content close to requesters and the key
problem is to design caching algorithms for reducing content
delivery delay. The problem obtains an interesting new twist with
the advent of advanced layered-video encoding techniques such
as Scalable Video Coding (SVC). We show that the problem of
finding the caching configuration of video encoding layers that
minimizes average delay for a network operator is NP-Hard, and
we establish a pseudopolynomial-time optimal solution using a
connection with the multiple-choice knapsack problem. We also
design caching algorithms for multiple operators that cooperate
by pooling together their co-located caches, in an effort to aid
each other, so as to avoid large delays due to downloading content
from distant servers. We derive an approximate solution to this
cooperative caching problem using a technique that partitions
the cache capacity into amounts dedicated to own and others’
caching needs. Numerical results based on real traces of SVC-
encoded videos demonstrate up to 25% reduction in delay over
existing (layer-agnostic) caching schemes, with increasing gains as
the video popularity distribution gets steeper, and cache capacity
increases.

Index Terms—Caching, Cooperation, Layered-video encoding.

I. INTRODUCTION

On-demand video is the driving force of the data tsunami

that we are witnessing nowadays [1], and one of the main

revenue sources for wireline and wireless network operators

and providers. Therefore, it is critical for network operators

to satisfy this increasing volume of video requests with the

minimum possible delay. A method to achieve this goal is

to cache video content as close as possible to end-users.

Such distributed caching architectures have been proposed for

content delivery networks (CDNs) and Telco-CDNs [2], and

recently also for cellular networks [3].

A key challenge in these systems is to devise the optimal

caching policy: for a given anticipated content demand, deter-

mine which content files should be placed in each cache, so as

to reduce the average content delivery delay for all requests.

These requests, if not satisfied by the local available cache, ne-

cessitate fetching content from distant back-end servers, which

induces significantly larger delay. This is a well known NP-
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hard problem, and many heuristic or approximation algorithms

have been proposed to address it [2], [3], [4].

Nevertheless, a specific aspect has been overlooked. Today

more often than not, networks deliver video files encoded at

different qualities to their customers. Users may implicitly or

explicitly ask for certain video quality (e.g., certain resolution

for YouTube videos [5]), while in other cases the delivered

video quality is determined by the operator (e.g., based on

agreements with content providers [6]).

These developments together with stringent requirements

for higher user quality of experience (QoE) and advances

in video-encoding technology have led to incorporation of

advanced video encoding techniques, which in turn, affect

the performance of existing caching algorithms. One such

encoding technique is Scalable Video Coding (SVC) [7],

which allows for multiple spatial resolutions (screen sizes),

different frame rate, or signal-to-noise ratio (SNR) qualities.

With SVC, each video file is encoded in a set of segments,

the layers, which, when combined, achieve the requested video

quality. A user asking the lowest video quality receives only

the basic layer (layer 1), while users asking for higher qualities

receive multiple layers, starting from layer 1 up to the highest

necessary one to achieve that quality. SVC is considered today

one of the emerging video technologies [8], and it is already

used for video streaming [9], [10], web services [11], and

video storage [12], among other applications.

With SVC, it is possible to store different layers of a certain

video in different caches. For a user that requests a video at

a given quality level, the different layers needed are received,

decoded and set to play at the same time, rather than serially.

In this setting, video delivery is constrained by the layer

delivered last, and hence the delay metric is determined by

the largest delay needed to deliver a layer among all layers

required from a cache or a server1. Due to SVC, the repertoire

of caching policies increases significantly, as the caching

decisions must be taken per layer and not per video file. Hence

all previous theoretical results (e.g., approximation ratios) need

to be revisited, as those caching algorithms do not take into

account layered video content and interdependencies among

1Notice that we study the case of delivering videos at certain qualities asked
by users. Hence, we do not consider adding or dropping layers in real-time to
handle bandwidth fluctuations and improve video streaming experience [13].
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different layers that all need to be fetched, possibly from

different caches, so as to achieve the requested video quality.

Although SVC has already been studied for various network

architectures [14]-[17], none of these heuristics or simulation-

based studies provides optimized solutions and/or approxima-

tion ratio guarantees against optimal caching policies. In this

work, we address precisely the problem of minimizing user

perceived video delivery delay for a network operator through

optimized caching layered video content.

Moreover, going one step further, we study the delay

performance benefits that may arise when different network

operators cooperate in SVC caching. Today there exist many

market entities (e.g., different Telco-CDNs) that often deploy

their own caches in the same locations so as to serve their

users-clients. The caches may be amenable to joint coordina-

tion [18]. Thus, it is meaningful to explore the potential of a

local cache of a certain network entity to retrieve a video layer

from the co-located cache of a different network entity, instead

of fetching it from a distant server of its own that would cause

larger delay. However, the diverse user demands that different

networks must serve render this cooperative caching problem

particularly challenging. The second problem we tackle is to

derive a joint caching policy that minimizes the total delay for

all network operators, considering the global content demand.

Methodology and Contributions. We consider a dis-

tributed caching architecture comprising several local nodes

such as small cells or base stations, in the proximity of

end-users. Requests for SVC-encoded video files in different

quality levels are randomly generated by users that are as-

sociated to these local nodes. A request can be satisfied by

the local node if it has cached the complete set of required

layers. Otherwise, the missing layers are fetched from a distant

content server, and this introduces additional delay.

Our first goal is to design the optimal caching policy for

such a network, aiming to minimize the average delay for

delivering the entire videos to users. This is a challenging

problem since taking decisions per layer adds up to the

complexity of traditional caching problems where copies of the

entire videos are cached. We show that this problem is NP-

hard and develop a pseudopolynomial-time optimal as well

as a Fully Polynomial Time Approximation (FPTA) algorithm

using a connection with the multiple-choice knapsack (MCK)

problem [19].

Next, we introduce the problem of cooperation of different

network operators in such distributed caching architectures,

where the goal is to derive a joint caching policy that mini-

mizes total delay for all networks. We assume that users of

the different networks request the same set of video files (or,

a common subset) with possibly different rates and quality

requirements. Therefore, the cooperative policy may reduce

the average delay for users of some networks, and increase it

for some others. Using a technique that partitions cache space

of a cache owned by an operator into two parts, dedicated

to own and other operator content respectively, we present a

solution algorithm with established approximation ratio.

The contribution of this work can be summarized as follows:

• Layered Video Caching. We introduce the problem that

...
NO 1 NO 2 NO K Content 

servers

...

Caches

Internet

Region 1
Users

Region 2 Region M

Fig. 1. A distributed caching architecture with K NOs and M regions. Every
cache is connected with a distant content server and possibly with other caches
in the same region.

derives per-video-layer caching policies, aimed at opti-

mizing average user delay in a distributed caching net-

work. This is a new caching problem, with no analytical

results to date, yet of increasing importance due to the

momentum of SVC encoding. We reduce this to the MCK

problem and provide a pseudopolynomial-time optimal

and a FPTA algorithm [19].

• Operator Cooperation. We propose cooperation policies

among different network operators and formulate the

respective optimization problem for devising the globally

optimal caching policy. Using a cache-partition technique,

we establish an approximation algorithm achieving at

least half of the optimal performance for a symmetric

case with equal transmission rates of the links between

nodes.

• Trace-driven Evaluation. We evaluate numerically the

proposed schemes using system parameters driven from

real traces. We show that our approach reduces average

delivery delay up to 25% over existing schemes, with

increasing gains as the video popularity distribution gets

steeper, and cache capacity increases.

The rest of the paper is organized as follows. Section

II describes the system model and formalizes the layered

video caching problem. Sec. III and Sec. IV describe our

solution algorithms when network operators serve their re-

quests independently from each other and when they cooperate

respectively. Sec. V presents the numerical results, while Sec.

VI reviews our contribution compared to related works. We

conclude our work in Sec. VII.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a general network architecture wherein a set K
of K Network Operators (NOs), or network entities, provide

internet access to their subscribers, or users, distributed in a

set M of M geographical regions. For each region, each NO

may have installed a cache at certain location along the path

from its subscribers to the back-end content servers. The NOs

may act independently or in cooperation [18]. An example

caching network is depicted in Figure 1 and the key notation

is summarized in Table I.
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A. Independent Caching by Network Operators

We first consider the case where NOs act independently

from each other and focus on a single NO k ∈ K. We denote

with Nk the set of caches, or cache-nodes, of NO k, each

located at a different region. The capacity of cache n ∈ Nk

is denoted with Cn ≥ 0 (bytes). The average user demand

for each video in a set V = {1, 2, ..., V } of V video files

and within a certain time period (e.g., a few hours or days)

is assumed to be fixed and known in advance, as in [2],

[3]. For example, the demand can be learned by analyzing

previous time statistics of user request patterns to infer future

demand [20]. Each video can be delivered with Q ∈ Z+

quality levels, indexed in set Q = {1, 2, ..., Q}. Namely, there

is a set L = {1, 2, ..., Q} of Q layers for each video, which

when accrued realize the different quality levels; layer 1 by

itself realizes quality 1, layer 1 combined with layer 2 realize

quality 2, and so on. The size of the lth layer of video v is

denoted with ovl > 0 (bytes), which typically decreases with

l, i.e., ov1 ≥ ov2 ≥ ... ≥ ovQ [7], [21].

User requests for videos in V with possibly different qual-

ities arrive at the nodes in Nk. For example, there may exist

Q = 2 quality levels, and half of the users request videos at

the low-definition quality (q = 1), while the other half ask

for high-definition (HD) quality (q = 2). Let λnvq ≥ 0 be the

average user demand associated with node n for the qth quality

level of video v. We define the request vector for each cache

node n, and the total demand vector for NO k, respectively:

λn = (λnvq : v ∈ V, q ∈ Q), λk =
(

λn : n ∈ Nk

)

. (1)

In order to deliver to a user the qth quality of video v, all

layers of that video from layer 1 up to q need to be delivered,

i.e.,
∑q

l=1 ovl bytes in total. In a streaming video system,

segments of the different layers are received, decoded and set

to play at the same time, rather than serially. In this setting,

video delivery is constrained by the layer delivered last, and

hence the delay for delivering the entire video will be equal

to the maximum delay needed for each of these layers to be

delivered.

Ideally, the user would like to receive all required layers

from the local node n which leads to the lowest delay possible.

Without loss of generality, we assume this reference delay to

be zero. If a layer cannot be found locally, node n can fetch

it from a distant content server that contains all videos and

layers. Similarly to the works in [2], [3], [4], we consider

this fetching to induce on average a large per unit data

delay of dn seconds, which depends on cache location. In

other words, each layer requested from the server will be

delivered with an average rate that is constant and given by

1/dn. This for example can be realized by using parallel TCP

connections [22], one connection for each layer, with fixed

bandwidth allocated per connection.

Let the binary decision variable xnvl indicate whether the

lth layer of video v will be placed at node n (xnvl = 1) or

not (xnvl = 0). Then, the caching policy for NO k is given

by the vector:

xk =
(

xnvl : ∀n ∈ Nk, v ∈ V, l ∈ L
)

. (2)

TABLE I
KEY NOTATIONS

Symbol Physical Meaning

K Set of K network operators (NOs)

V Set of V video files

Q Set of Q qualities

L Set of L layers

M Set of M geographical regions

N Set of cache-nodes

Nk Cache-nodes belonging to NO k

Nm Cache-nodes located at region m

Mn Region where cache-node n is located

Cn Cache capacity at node n (bytes)

λnvq Average demand at node n for video v at quality q

ovl Size of layer l of video v (bytes)

dn Per unit data delay for serving requests at node n by a server

dnn′ Per unit data delay for serving requests at node n by node n′

xnvl Caching decision for layer l of video v to node n

Jk(xk) The aggregate user delay for NO k in independent setting

Jc
k
(x) The aggregate user delay for NO k in cooperative setting

Clearly, each node n ∈ Nk cannot cache more data than its

capacity:
∑

v∈V

∑

l∈L

ovlxnvl ≤ Cn. (3)

Our goal is to devise the caching policy that minimizes the

aggregate delay for all users of NO k, denoted with Jk(xk):

Jk(xk) =
∑

n∈Nk

∑

v∈V

∑

q∈Q

λnvq · max
l∈{1,...,q}

{

(1−xnvl) ·ovl ·dn
}

,

(4)

where the delay for delivering layer l of video v is zero if this

layer is cached at the local node n (i.e., xnvl = 1); otherwise

the delay is ovl ·dn. The delay for delivering the entire video v
at quality level q equals to the maximum of the delays needed

to deliver layers 1 to q.

B. Cooperative Caching among Network Operators

Let us now consider the case that the NOs have decided

to jointly coordinate their different caches in the same re-

gion2 [18]. Therefore, one cache can send video layers to the

other to satisfy the other’s demand. Assume that each NO in

K serves requests for the same set V of videos3. Nevertheless,

each NO has its own clients and may need to serve different

demand, i.e., λk1
6= λk2

. We define the set of all cache nodes

N =
⋃

k∈K Nk and the total expected demand Λ =
⋃

k∈K λk.

If a layer cannot be found at the local cache node n, then n
can download it from another node n′ in the same region that

has already cached it. We denote with dnn′ the per unit data

delay incurred for this transfer, where it trivially holds that

dnn = 0, ∀n ∈ N . As a last resort for node n, the content

server can deliver the layer with delay dn > dnn′ , ∀n, n′ in

the same region. Clearly, a user may download the required

layers from different caches or servers. The user experienced

delay will be equal to the maximum of the respective delays.

2Note that still cache-nodes at different regions act independently each
other.

3Note that our model captures also the case that the networks provide
different, yet overlapping sets of videos, in which case V stands for the
overlapping video set.
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(a) Independent Caching.
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(b) Cooperative Caching.

Fig. 2. An example illustrating the benefits of cooperative caching for two
network operators.

The objective of the cooperating NOs is to minimize the

total average video delivery delay for satisfying the entire set

of requests Λ. We denote the joint caching policy by x =
(xk : k ∈ K). Then, the total delay can be written as Jc

T (x) =
∑

k∈K Jc
k(x), where:

Jc
k(x) = (5)

=
∑

n∈Nk

∑

v∈V

∑

q∈Q

λnvq max
l∈{1,...,q}

{

∏

n′∈N :
M

n′=Mn

(1− xn′vl)ovldn

+
(

1−
∏

n′∈N :
M

n′=Mn

(1− xn′vl)
)

ovl min
n′∈N :

M
n′=Mn, x

n′vl
=1

{dnn′}
}

.

Here, Mn ∈ M indicates the region where node n is located.

Every required layer l ∈ {1, ..., q} will be delivered to local

node n by the content server with per unit data delay dn if

none of the nodes in the same region with n have cached it,

i.e., if
∏

n′∈N :Mn′=Mn
(1−xn′vl) = 1. Otherwise, among the

nodes that have cached l, the one with the lowest delay will

deliver it.

Motivating Example. The benefits that such cooperation

policies may yield can be easily understood through the simple

example in Figure 2. There exist V = 2 videos and Q = 2
quality levels. The latter can be realized by combining L = 2
layers per video; l11, l12 for video 1, and l21, l22 for video 2.

Each layer is of size 1 (based on some normalized size scale).

There is also a region with two nodes, indexed by 1 and 2, that

belong to two different NOs. Each node is equipped with a

unit-sized cache. The delay coefficients are: d1 = d2 = 2 and

d12 = d21 = 1. The demand at node 1 is given by: λ111 = 0,

λ112 = 10, λ121 = 1, λ122 = 0, while at node 2 it is: λ211 = 9,

λ212 = 9, λ221 = 10, λ222 = 0.

Ideally, each node would store the two layers of video 1

(l11, l12) and the first layer of video 2 (l21) in order to serve

all its requests locally. However, this is not possible due to the

cache capacity limitations. When NOs operate independently

from each other, we can show that the optimal caching policy

dictates both nodes to cache l21. The total delay will be: λ112 ·
d1+λ211 ·d2+λ212 ·d2 = 56. Here, we note that caching l12
at node 1 would not improve user delay at all, since l11 layer

would still be delivered by the content server yielding λ112 ·d1
delay. However, if NOs cooperate, then the optimal caching

policy changes; it places l12 to node 1 and l11 to node 2. Now,

the cached layers are different between the two nodes. Hence,

they can be exchanged to reduce further delay. The total delay

will be: λ112 ·d12+λ121 ·d1+λ212 ·d21+λ221 ·d2 = 41 < 56.

Before we present our caching solutions, we remark that our

model considers the average delay for delivering the entire

video to the user that requests it. This delay will directly

impact the video streaming process through the necessary

startup delay that is introduced at the video decoder of the

user. We provide more details about this issue in our online

technical report [23].

III. INDEPENDENT CACHING BY NETWORK OPERATORS

In this section, we address the layered video caching

problem for the case that different network operators devise

independently their caching policies. Specifically, each NO k
solves the following problem:

min
xk

Jk(xk) (6)

s.t.
∑

v∈V

∑

l∈L
ovlxnvl ≤ Cn, ∀n ∈ Nk, (7)

xnvl ∈ {0, 1}, ∀n ∈ Nk, v ∈ V, l ∈ L. (8)

The local nodes of a NO k are in different regions and

they cannot send content each other. Hence, caching deci-

sions at a node n ∈ Nk do not affect the rest and the

problem can be decomposed into |Nk| independent subprob-

lems, one for each node. For a specific node n ∈ Nk, we

note that without caching the aggregate user delay would

be
∑

v∈V

∑

q∈Q λnvqov1dn. This is because, all requests are

served by the remote server (with per unit data delay dn),

and video delivery is constrained by the largest layer, i.e.,

layer l = 1. Caching can reduce the aggregate delay by

serving a fraction of the requests locally. Namely, caching

only layer l = 1 of a video v ensures that the delay will

be reduced by
∑

q∈Q λq
nv · dn · (ov1 − ov2), since l = 2

will be the layer delivered last. In the same sense, caching

both l = 1 and l = 2 layers, moves the bottleneck point for

video delivery to the layer l = 3, thus reducing the delay

by
∑

q∈Q λq
nv · dn · (ov2 − ov3) more, and so on. Hence, the

equivalent problem of maximizing the delay savings for node

n (named Pn) can be expressed as follows:

Pn : max
xn

∑

v∈V

∑

q∈Q
λnvqdn

q
∑

l=1

(ovl − ovl+1)
l
∏

i=1

xnvi

s.t. constraint: (3),

xnvl ∈ {0, 1}, ∀v ∈ V, l ∈ L, (9)

where xn = (xnvl ∈ {0, 1} : ∀v ∈ V , l ∈ L), and, with a

slight abuse of notation, we set ovl+1 to be equal to zero for

l = q in the above summation.

Solution: Subsequently, we characterize the complexity of

problem Pn, and present efficient solutions. Due to space lim-

itations, readers are requested to refer to the online technical

report [23] for the detailed proofs of the theorems and lemmas,

while we have included in this document the complete proof

of the main result of this work (Theorem 3). We first prove

the intractability of the Pn problem in Theorem 1.

Theorem 1: Problem Pn is NP-Hard.
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Sketch of proof: The proof is based on a reduction from

the Knapsack problem, which is NP-Hard. Given a knapsack

of limited capacity and a set of items with nonnegative weights

and values, the question is how to place items in the knapsack

to maximize the total value of the packed items [19]. We create

an equivalent instance of the Pn problem where there is a

cache of capacity equal to the knapsack, one video for each

item, each video has one layer of size equal to the weight of

the mapped item, and local demand equal to the value of that

item.

The following lemma is needed.

Lemma 1: In the optimal solution of Pn, layer l of a video

should not be cached unless all previous layers l′ < l of that

video have been cached.

Proof: Let us assume that there is an optimal solution

to Pn that caches at node n the layer l of video v without

caching a layer l′ < l of the same video. Then, removing

l from the cache n would have no impact on the objective

value of Pn, since the users that download l from n need to

download also l′ from the content server, which incurs delay

ovl′ · dn ≥ ovl · dn. Filling the cache space left free with a

layer of another -previously uncached- video would improve

the objective value of Pn. This contradicts the assumption.

Inspired by Lemma 1, we identify a connection of problem

Pn to the following variant of the knapsack problem [24]:

Definition 1: Multiple-Choice Knapsack (MCK): Given R
classes E1, E2,...,ER of items to pack in a knapsack of

capacity W , where the ith item in class Er has value pri and

weight wri, choose at most one item from each class such that

the total value is maximized without the total weight exceeding

W .

Then, we describe the connection between problem Pn and

MCK problems in the following lemma.

Lemma 2: The problem Pn is polynomial-time reducible to

the MCK problem.

Sketch of proof: Given an instance of the Pn problem,

we construct the equivalent instance of the MCK problem as

follows. There is a knapsack of capacity Cn and V classes

of items (one class for each video), each one with Q items

(one item for each quality). The ith item in the vth class

has weight
∑i

l=1 ovl and value
∑

q∈Q λnvqdn
∑q

l=1(ovl −

ovl+1)
∏l

j=1(1{j∈{1,2,...,i}}), where 1{c} = 1 if condition c =

true; else zero, and ovl+1 = 0 for l = q. If the ith item of

the vth class is packed in the knapsack, we place the i first

layers, i.e., layers 1 to i, of video v to cache n. The solution

caches no more data than Cn and satisfies Lemma 1.

Lemma 2 provides a valuable result, since it paves the

way for exploiting a wide range of efficient algorithms that

have been proposed for the MCK problem in order to solve

problem Pn. Specifically, although MCK problem is NP-

hard, there exists a pseudopolynomial-time optimal algorithm

and a fully-polynomial-time approximation (FPTA) algorithm

to solve it [24]. Pseudopolynomial means that the time is

polynomial in the input (knapsack capacity and item weights),

but exponential in the length of it (number of digits required

to represent it). The FPTA algorithm finds a solution with a

performance that is provable no less than (1 − ǫ) times the

optimal, while its running time is polynomial to 1
ǫ
, ǫ ∈ (0, 1).

Therefore, the FPTA algorithm complexity and performance

are adjustable, which makes it preferable compared to the first

algorithm for large problem instances. Hence, we obtain the

following result:

Theorem 2: There exists a pseudopolynomial-time optimal

algorithm and a FPTA algorithm for problem Pn.

IV. COOPERATIVE CACHING AMONG NETWORK

OPERATORS

In this section, we focus on the layered video caching

problem when multiple network operators come in offline

agreement to cooperate. We stress again that cooperation

amounts to putting together their local pools of resources

(caches in our case) in order to cache layered video destined

also for users of other networks. The problem of determining

the caching policy that minimizes the total user delay of all

NOs can be expressed as follows:

min
x

Jc
T (x) (10)

s.t.
∑

v∈V

∑

l∈L
ovlxnvl ≤ Cn, ∀n ∈ N , (11)

xnvl ∈ {0, 1}, ∀n ∈ N , v ∈ V, l ∈ L, (12)

where x = (xnvl : ∀n ∈ N , v ∈ V, l ∈ L).
Decomposition: Since content can only be transferred

between nodes in the same region, the above problem can

be decomposed into M independent subproblems, one for

each region m ∈ M. We denote with Nm ⊆ N the set

of nodes located at region m. For a specific region m, we

observe that the total user delay without caching would be

Dm
wc =

∑

n∈Nm

∑

v∈V

∑

q∈Q λnvqov1dn, since all requests

are served with layer 1 (which is the largest among all layers)

downloaded by the content servers. Caching can reduce the

total delay by delivering some of the required layers by the

caches instead of the servers. We can express the equivalent

problem of maximizing delay savings for region m (named

Rm) as follows:

Rm : max
xm

Dm
wc −

∑

n∈Nm

∑

v∈V

∑

q∈Q
λnvq max

l∈{1,...,q}

{

∏

n′∈Nm

(1− xn′vl)ovldn + (1−
∏

n′∈Nm

(1− xn′vl))ovldnn∗

}

s.t.
∑

v∈V

∑

l∈L ovlxnvl ≤ Cn, ∀n ∈ Nm (13)

xnvl ∈ {0, 1}, ∀n ∈ Nm, v ∈ V, l ∈ L (14)

where xm = (xnvl : n ∈ Nm, v ∈ V , l ∈ L). Here, a required

layer l of a video v will be delivered to node n by the content

server with delay ovldn if none of the nodes have cached it,

i.e., if
∏

n′∈Nm
(1− xn′vl) = 1. Otherwise, among the nodes

that have cached l, the one with the lowest delay will deliver

it, i.e., the node n∗ = argminn′∈Nm:xn′vl=1{dnn′}.

Solution: Rm is a very challenging problem, since the

already NP-Hard problem Pn defined in the previous section

is further perplexed in order to account for all the scenarios

of cooperation among the nodes in the same region, i.e.,

∀n ∈ Nm. Namely, each node should seek the best tradeoff

between caching the layers of the videos that are popular
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for its own users (optimizing local demand), and caching the

ones that are frequently requested by users of other nodes in

the same region (optimizing global demand). Subsequently,

we present an algorithm that achieves an approximation ratio

for this important problem. The algorithm partitions the cache

space of each node based on an input parameter F ∈ [0, 1].
Here, F stands for the portion of each cache that is filled

in with globally popular video content, while the rest 1 − F
portion is filled in with locally popular video content. Clearly,

if F = 0, then each node n caches the locally popular video

layers independently from the others (i.e., by solving problem

Pn), while when F = 1 all nodes put together their caches

and they fill in the union cache space with globally popular

video layers.

The proposed algorithm uses as components the solution to

the following two problems:

1. MCK(m): The instance of the MCK problem comprising

a knapsack of capacity F ·
∑

n∈Nm
Cn and V classes of items,

each with Q items. The ith item of the vth class has weight
∑i

l=1 ovl and value
∑

n∈Nm

∑

q∈Q λnvqdn
∑q

l=1(ovl −

ovl+1)
∏l

j=1(1{j∈{1,2,...,i}}), where 1{.} is the indicator func-

tion, i.e. 1{c} = 1 if condition c is true; otherwise it is zero,

and ovl+1 = 0 for l = q. Here, the ith item of the vth class

corresponds to the first i layers of video v.

2. Pn(An): The instance of the Pn problem in which the

layers in the set An are already placed in cache n.

We now present the proposed Layer-aware Cooperative

Caching (LCC) algorithm:

• Stage 1: Solve the MCK(m) problem. For each

item picked in the knapsack, place the correspond-

ing set of layers into the node n ∈ Nm with

the highest local demand for the respective video.

Ensure at each step that at most F ·Cn+s amount

of data is placed at each node n, where s is the

maximum size of an item.

• Stage 2: For each node n ∈ Nm, fill in its

remaining cache space by solving the Pn(An)
problem, where An consists of the layers placed

at n in stage 1.

Theorem 3 summarizes one of the main contributions of

this paper:

Theorem 3: LCC algorithm achieves an approximation ratio

of min{ ρµ, ρ′µ′ } for the Rm problem, where:

ρ = F −
s

∑

n∈Nm

Cn

, µ = min
n∈Nm

min
n′∈Nm\n

{dn − dnn′}

max
n′∈Nm\n

{dn − dnn′}
,

ρ′ = 1− F −
2s

min
n∈Nm

Cn

, µ′ = min
n∈Nm

min
n′∈Nm\n

dnn′

max
n′∈Nm\n

dnn′

.

The proof of Theorem 3 is deferred to the Appendix. The

tightness of the approximation ratio of LCC algorithm depends

on the delay coefficients (dn, dnn′ , ∀n, n′ ∈ Nm), the cache

sizes (Cn, ∀n ∈ Nm) and the input value F . In a symmetric

case where dn = d and dnn′ = d′, ∀n, n′ ∈ Nm it becomes:
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Fig. 3. The cumulative size of the layers required at each quality level for
the videos in the library [21]. Each video is encoded into 5 quality levels cor-
responding to different quantization parameters; QP ∈ {20, 25, 30, 35, 40}.

µ = 1 and µ′ = 1. When additionally the caches are relatively

large, i.e., s
minn∈Nm Cn

→ 0, setting F = 0.5 yields an

approximation ratio of 0.5, i.e., LCC algorithm achieves at

least half of the optimal performance.

We note that F is passed as an input to LCC algorithm. A

reasonable choice for F is the value that yields the best pos-

sible approximation ratio. This requires solving the following

optimization problem:

max
0≤F≤1

min{ ρµ, ρ′µ′ }. (15)

Here, the objective function is pointwise minimum of finite

number of affine functions and therefore it is concave. Hence,

this problem can be solved using standard convex optimization

techniques [25].

The complexity of LCC algorithm stands for solving the

MCK(m) and the P (An) problems, ∀m ∈ M, n ∈ Nm.

Like MCK(m), the problem Pn(An) can be expressed as

a MCK problem, as we show in the following lemma, and

hence it can be solved in an efficient manner. Besides, these

problems can be solved in a distributed fashion which reduces

the overall complexity.

Lemma 3: Problem Pn(An) is polynomial-time reducible

to the MCK problem.

Sketch of proof: The reduction is similar to the one in

Lemma 2, differing in that here placing a sequence of layers

in the knapsack will not increase further the weight and the

value of the knapsack for the layers that are already in it.

Finally, we note that the cooperative caching policy targets

the total (across all NOs) delay, and, hence, it may result

in increased aggregate delay for a certain NO, or in the

best case, in uneven delay reductions across the different

NOs. Considering that delay performance may be directly

translated to revenue, some NOs may be unwilling to endorse

the cooperation. This issue can be resolved through side-

payments, or money transfers, from the NOs that enjoy the

largest delay reductions to the NOs with fewer benefits in

terms of delay reduction, or even delay increases. We provide

more details about this issue in [23].

V. TRACE-DRIVEN EVALUATION

In this section, we present the numerical results of the exper-

iments that we have conducted to show the superiority of the

proposed algorithms over a commonly used caching scheme.

Specifically, we implement the following three algorithms:
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(c) Impact of demand steepness.

Fig. 4. (a) The average video delivery delay achieved by IC, Femtocaching and LCC algorithms as a function of (a) the rate between

caches, (b) the cache sizes, and (c) the shape parameter of the Zipf distribution.

• Independent Caching (IC): Each NO serves only its

own subscribers. For each cache-node n, the caching is

performed independently from the rest, by solving the Pn

problem defined in Section III.

• Layer-aware Cooperative Caching (LCC): The proposed

cooperative algorithm in Section IV, according to which

all nodes dedicate a fraction F of their cache space for

storing layers of videos that are globally popular. The

remaining space is filled in based on the local video

demand.

• Femtocaching [3]: This cooperative caching algorithm

starts with all the caches being empty. Iteratively, it

performs the placement of a layer to a cache that achieves

the maximum performance improvement, in terms of total

delay (Jc
T ). The procedure terminates when there does not

exist any cache space available to store content.

We need to emphasize that, in order to solve the MCK prob-

lem in IC and LCC schemes, we used the Mosek Optimization

Toolbox. The execution time is only a few minutes. Our code is

written in C language in the Visual Studio 2010 environment

and it is publicly available online in [26]. We believe that

this will encourage future experimentation with video caching

algorithms for the benefit of the research community.

The evaluation is carried out for K = 3 NOs and a single

geographical region. Each NO has installed a cache of capacity

equal to C (bytes). The rate of the link between a content

server and each of the caches is 1/dn = 1mbps, while between

any pair of caches it is 1/dnn′ . As a canonical scenario we set

1/dnn′ = 5mbps, while our evaluation also covers the cases

where: 1/dnn′ ∈ {1, 2, ..., 10} mbps.

Requests for V = 1, 000 popular videos are randomly

generated by the users that are associated to the caches. Each

video is realized in Q = 5 quality levels using SVC. We

set the sizes of the 5, 000 respective layers randomly using

the real-world trace in [21]. This dataset contains detailed

information about 19 SVC-encoded popular movies spanning

5 SNR quality levels (boxplot in Figure 3). We believe that

this is representative of a realistic video delivery system, since

layer sizes span two orders of magnitude, and videos of various

source formats and publish times are included. The total size

of the 5, 000 layers is slightly lower than 1TB.

Following empirical studies in VoD systems, we spread the

user requests across videos using a Zipf distribution, i.e., the

request rate for the ith most popular video is proportional

to i−z , for some shape parameter z > 0 [27]. We further

spread the requests across the Q = 5 quality levels uniformly

at random. Unless otherwise specified, we set: C = 100GBs

and z = 0.8, while we run the LCC algorithm for each value

of F at 0.1 granularity, and pick the value with the lowest

total delay.

Impact of rate between caches: We first explore the impact

of varying the bandwidth rate between the caches on the

average video delivery delay. In the experiment in Figure 4(a),

the rate spans a wide range of values, starting from 1 to 10
mbps, reflecting different operating conditions. We note that

the performance of the IC algorithm is unaffected by this

variation, since the caches are excluded from transmitting con-

tent one another. On other hand, increasing the rate between

caches reduces delay for the cooperative caching algorithms

(Femtocaching and LCC), since the layers can be exchanged

faster between the caches. The proposed algorithm (LCC)

performs better than its counterparts for all the rate values.

The delay gains are up to 54% and 22% when compared to

IC and Femtocaching algorithm respectively.

Impact of cache sizes: We analyze the impact of cache

sizes on performance in Figure 4(b). As expected, increasing

cache sizes reduces delay for all the algorithms as more

requests are satisfied locally (without the participation of the

content server). IC results in the largest delay compared to the

rest schemes (up to 76% difference), since the latter schemes

allow the exchange of content between the caches. The pro-

posed LCC algorithm consistently outperforms Femtocaching,

with the gains increasing with cache sizes (up to 22%).

Impact of demand steepness: Finally, we show the impact

of the Zipf shape parameter z on algorithms’ performance

in Figure 4(c). As the z value increases the demand dis-

tribution becomes steeper and a few videos attract most of

the demand. On other hand, a small z value corresponds to

an almost uniform demand distribution. We observe that the

delay decreases with z for all the algorithms, reflecting that

caching effectiveness improves with the steepness of demand

distribution. LCC performs significantly better than IC and

Femtocaching, especially for large z values, with gains up to
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39% and 25% respectively.

VI. RELATED WORK

Scalable Video Coding (SVC) is an extension of

H.264/MPEG4-AVC standard for realizing multiple quality

levels of video [7]. SVC allows for different types of scalable

encoding, i.e., spatial, temporal (frame rate), and quality

(SNR), while it is also possible to deliver any combination

of them. SVC typically introduces an encoding overhead that

results in up to 10% increase in the size of the video (compared

to that with a non-scalable encoding) [7]. However, the benefits

of SVC outperform this overhead and render it an attractive

solution both for wireline [14] and wireless networks [17].

Caching is an NP-Hard problem even for the traditional

case that uncoded content files (i.e., without SVC) are to be

stored in the caches. Optimal caching solutions are limited to

special cases with: (i) a small number of files [28], (ii) ultra-

metric costs between cache-nodes [29], (iii) single-hop social

groups [30], and (iv) 2-level hierarchies with certain additional

restrictions [31]. The proofs of optimality are based on totally

unimodular constraint matrices, reductions to variants of the

matching problem, or, of the maximum-flow problem. For the

general case, approximation algorithms have been proposed

in [2], [3], [4]. The approximation ratio proofs are based on

expressing the objective function as a submodular set function,

or applying linear relaxation and rounding techniques. Never-

theless, all the above results are not applicable for the case

of SVC encoded video files, as in this case caching decisions

are made per layer and the delay metric is determined by the

layer delivered last. Hence, both the solution space and the

objective function of the caching problem are different.

Exploiting SVC in video caching has been recently pro-

posed in the context of CDN [14], IPTV [15], helper-assisted

VoD [16], and small-cell networks [17]. These works either

compare SVC with other video encoding technologies, or they

propose heuristic-based or numerically evaluated layer caching

schemes. In contrast, we use a general (abstract) model that

can potentially apply to different network architectures, and

provide layered video caching algorithms that are provably

optimal or have tight approximation ratios.

VII. CONCLUSION

We studied caching policies for layered encoded videos

aiming to reduce the average video delivery delay. The

proposed framework captures also cooperative scenarios that

may arise, and which can further improve the user-perceived

performance. To overcome the NP-Hardness nature of the

problem, we derived novel approximation algorithms using a

connection to a knapsack-type problem and a cache-partition

technique. The results demonstrated up to 25% delay gains

over conventional (layer-agnostic) caching schemes. We be-

lieve that this paper opens exciting directions for future work.

Among them, it is interesting to relax the assumption of

constant delay parameters that is commonly used in caching

problems (e.g., see [2], [3], [4]) or change the objective to

directly optimize QoE performance metrics related to video

streaming (e.g., video playback pauses), and study how the

results are affected.
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APPENDIX

PROOF OF THEOREM 3

In order to prove Theorem 3, we first present the following

lemma, which is proved in [19]:

Lemma 4: For any set of arbitrary positive numbers

p1, p2, ..., pT , w1, w2, ..., wT , T ∈ Z+, if p1

w1
≥ p2

w2
≥, ...,≥

pT

wT
, then

j
∑

i=1

pi ≥

j∑

i=1

wi

T∑

i=j+1

wi

T
∑

i=j+1

pi, ∀j ∈ {1, 2, ..., T − 1}.

Then, we note that at stage 2 of the LCC algorithm, the

cache-nodes are asked to optimize their local demand, given

that a portion of their cache space is already occupied by

globally popular content (stage 1). Clearly, the latter constrains

the optimization that takes place at each node, while it may

introduce a loss to the local demand objective. The following

lemma provides a bound to this loss.

Lemma 5: Let P ∗
n and P ∗

n(An) be the optimal solution

values of the problems Pn and Pn(An) respectively. Then,

P ∗
n(An) ≥ (1− |An|+s

Cn
) · P ∗

n

Proof: According to Lemma 1, for a video v placed

in the cache n, a sequence of layers {1, 2, ..., i} will be

cached. We define the weight wv =
i
∑

l=1

ovl and the value

pv =
∑

q∈Q
λnvqdn

q
∑

l=1

(ovl − ovl+1)
l
∏

j=1

(1{j∈{1,2,...,i}}), where

ovl+1 = 0 for l = q. Here, wv and pv capture the cache space

occupied by video v and the delay savings respectively.

We denote with Vn = {1, 2, ..., T} the set of videos placed

in the cache of node n according to the P ∗
n solution in

descending order of their pv

wv
values. Then, we find an element

j ∈ Vn such that:

Cn − |An| − s ≤

j
∑

v=1

wv ≤ Cn − |An|. (16)

We also define the sets Γj = {1, ..., j} and ∆j = {j +
1, ..., T}. We can show that:

P ∗
n(An) ≥

∑

v∈Γj

pv. (17)

This is because the total size of the videos in Γj is less or

equal to Cn − |An| and Pn(An) is the optimal solution value

for node n when the available cache space of n is Cn−|An|.
Then, we show that:

∑

v∈Γj

pv ≥

∑

v∈Γj
wv

∑

v∈∆j
wv

·
∑

v∈∆j

pv

≥
Cn − |An| − s

|An|+ s
·
∑

v∈∆j

pv = (
Cn

|An|+ s
− 1) ·

∑

v∈∆j

pv,

(18)

where the first inequality is because of Lemma 4. The second

inequality is because of inequality (16) and the fact that
∑

v∈∆j

wv = Cn −
∑

v∈Γj

wv .

For any positive constant c it holds that: if y ≥ x ≥ 0,

then y
y+c

≥ x
x+c

[19]. Hence, replacing with y = P ∗
n(An),

x = ( Cn

|An|+s
− 1) ·

∑

v∈∆j
pv and c =

∑

v∈∆j
pv and using

inequalities (17) and (18), we obtain that:

P ∗
n(An)

P ∗
n(An) +

∑

v∈∆j
pv

≥
( Cn

|An|+s
− 1) ·

∑

v∈∆j
pv

( Cn

|An|+s
− 1) ·

∑

v∈∆j
pv +

∑

v∈∆j
pv

=

Cn

|An|+s
− 1

Cn

|An|+s

= 1−
|An|+ s

Cn

. (19)

Finally, we have:

P ∗
n(An)

P ∗
n

=
P ∗
n(An)

∑

v∈Γj
pv +

∑

v∈∆j
pv

(17)

≥
P ∗
n(An)

P ∗
n(An) +

∑

v∈∆j
pv

(19)

≥ 1−
|An|+ s

Cn

, (20)

where the first equality holds by the definition of P ∗
n .

Lemma 5 serves as a building block for bounding the overall

performance of LCC algorithm, and therefore it facilitates the

derivation of Theorem 3. To show this, we start by denoting

with SLCC and SOPT the delay savings achieved by the LCC
and the optimal solution to the Rm problem respectively. Then,

we divide SLCC into two parts; (i) SLCC
l that captures the

delay savings incurred when user requests are served by their

local cache node instead of another cache-node, and (ii) SLCC
g

that stands for the additional delay savings incurred when

requests are served by any of the cache nodes instead of a

content server. Similarly, we introduce the values SOPT
l and

SOPT
g for the optimal solution. Then, we prove that:

SLCC
l ≥

∑

n∈Nm

P ∗
n(An)

dn
min

n′∈Nm\n
dnn′

≥
∑

n∈Nm

(1− F −
2s

Cn

)
P ∗
n

dn
min

n′∈Nm\n
dnn′

≥ (1− F −
2s

min
n∈Nm

Cn

)
∑

n∈Nm

min
n′∈Nm\n

dnn′

max
n′∈Nm\n

dnn′

P ∗
n

dn
max

n′∈Nm\n
dnn′

≥ ρ′µ′SOPT
l , (21)

where the first inequality is because on its right hand side

we always consider the minimum possible delay savings per

request, i.e., the case that the closest to n node has cached the

requested layer. The second inequality is based on Lemma 5

and the fact that |An| in stage 2 of LCC algorithm is upper-

bounded by F · Cn + s, ∀n ∈ Nm. The third inequality is

obtained after simple algebra, and the last inequality is because

we always consider the maximum possible delay savings per

request on the left hand side. Similarly, we can show that:

SLCC
g ≥ ρ · µ · SOPT

g , (22)

where we have applied Lemma 5 for a single cache-node,

indexed by n = 0, of capacity C0 =
∑

n∈Nm
Cn and |A0| =

(1− F ) ·
∑

n∈Nm
Cn (according to the stage 1 of LCC). By

summing (21) and (22) we complete the proof of Theorem 3.
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