
Optimal Energy Storage Control Policies
for the Smart Power Grid

Iordanis Koutsopoulos†∗ Vassiliki Hatzi† Leandros Tassiulas†∗
†Department of Computer and Communications Engineering, University of Thessaly

∗Center for Research and Technology Hellas (CERTH), Greece

Abstract—Electric energy storage devices are prime candidates
for demand load management in the smart power grid. In this
work, we address the optimal energy storage control problem from
the side of the utility operator. The operator controller receives
power demand requests with different power requirements and
durations that are activated immediately. The controller has access
to one energy storage device of finite capacity. The objective is to
devise an energy storage control policy that minimizes long-term
average grid operational cost. The cost is a convex function of
instantaneous power demand that is satisfied from the grid, and
it reflects the fact that each additional unit of power needed to
serve demands is more expensive as the demand load increases.
For the online dynamic control problem, we derive a threshold-

based control policy that attempts to maintain balanced power
consumption from the grid at all times, in the presence of continual
generation and completion of demands. The policy adaptively
performs charging or discharging of the storage device. The
former increases power consumption from the grid and the latter
satisfies part of the grid demand from the stored energy. We prove
that the policy is asymptotically optimal as the storage capacity
becomes large, and we numerically show that it performs very
well even for finite capacity. The off-line problem over a finite
time horizon that assumes a priori known power consumption to
be satisfied at all times, is formulated and solved with Dynamic
Programming. Finally, we show that the model, approach and
structure of the optimal policy can be extended to also account
for a renewable source that feeds the storage device.

I. INTRODUCTION

The smart power grid will rely on information and commu-
nication technologies and advanced control methods to manage
the dynamic demand load and to ensure efficient use of electric
energy [1], [2]. Major constituent entities of the smart grid
are expected to be various types of renewable energy sources,
as well as energy storage components that may or may not
be attached to the renewable ones. Smart metering and bidi-
rectional communication enable real-time interconnection of
the consumer and operator premises through IP addressable
components over the Internet. These technologies allow power
consumption monitoring, automated control of consumption
of customer appliances through messages from the operator
Command and Control (C&C) center, real-time electricity price
signaling, and fault diagnosis.

Demand load management is primarily employed by power
utility operators so as to reduce the grid operational costs. The
rationale of demand load control is to alleviate high demand
load at peak times. This can be achieved for instance by
using the time slack of delay-tolerant power demands so as to

temporally shift part of the peak load in time when it is feasible
to do so. Thus, the risk of a potential grid failure is reduced,
while the operational cost is lowered by avoiding using more
expensive or less efficient power generation means.

Recent advances in electric energy storage technologies have
rendered backup devices like uninterrupted power supply (UPS)
or batteries, and Plug-in Hybrid Electric Vehicles (PHEVs)
prime candidates for demand load management. These devices
have significant storage capacity of up to a few tens of KWh.
With appropriate storage management policies, these devices
can be quite advantageous for electric utility operators and
consumers. If stored energy management is delegated to the
grid operator, a valid objective is to minimize the grid opera-
tional cost. Batteries can be charged at off-peak-load times, and
(part of) this stored energy can be used to satisfy increased
demand at peak times. If storage management is performed
at the consumer level (e.g. through PHEVs), the goal is to
minimize the cost of power consumption, assuming that an
instantaneous time-of-use price per unit of consumed power is
fed back. Energy can then be stored when the price of consumed
power is low, and it can be used to satisfy part of the demand
when the price is high.

In this paper, we address the problem of optimal stored
energy control faced by the utility operator whose objective
is to find an energy storage management policy for the storage
device such that the grid operational cost over a time horizon
is minimized. The operational cost is modeled as a convex
function of instantaneous total power consumption so as to
reflect the fact that each additional Watt of power needed to
serve power demands becomes more expensive as the total
power demand increases.

A. Related work
There exists significant amount of work on leveraging stored

energy in various contexts. In wireless networks, the work [3]
considers optimal control with rechargeable batteries and time-
varying channels, in the sense of maximizing total utility which
is a concave function of link rates. Energy is obtained from the
battery, and the transmit power is controlled for transmitting
over wireless links of time-varying state. The authors propose
a policy that is asymptotically optimal for sufficiently large
battery capacity. A similar problem is considered in [4], along
with a detailed assessment of the quality of a solution versus
the energy buffer size, and a policy is proposed that performs



well even for smaller buffer sizes. Two online algorithms are
developed, which jointly manage the energy and make power
allocation decisions for transmissions.

In the context of electric energy storage, the work [5] solves
the optimal stored energy control from the consumer side
amidst time-varying prices. The work [6] uses UPS storage
devices to reduce the electricity bill in a data center under
varying prices. An online algorithm is proposed, based on
Lyapunov optimization, for optimizing the time average cost
which is linear in power demand load. Various constraints
on charging and discharging, as well as the cost of repeated
charging and discharging are modeled. In [7], the interaction
of multiple energy storage facilities is considered. The strategy
of each facility is how much to charge or discharge, and the
different entities interact through a formed price that is linear in
total grid load. In [8], the authors consider coordinated charging
of PHEVs so as to use stored electric energy to cope with high
demand and intermittent generation capability of renewable
sources. Finally, in [9], the authors consider the problem of
minimizing the time average cost of using resources other than
the basic ones, subject to keeping the queue of demand backlog
stable, in the presence of renewable supply sources. The cost
is again linear in the amount of energy consumed. Various
research initiatives that rely on efficient energy storage exist,
such as the WINSmartGrid project [10] at UCLA and Vehicle
to Grid (V2G) [11] at University of Delaware.

B. Our contribution
We address the optimal energy storage control problem that

is faced by a grid operator. To the best of our knowledge, this is
the first work that considers the problem from the point of view
of the operator. The controller has access to one energy storage
device of finite storage capacity. The contributions of this work
to the literature are as follows: (i) We model operational cost
as a convex function of instantaneous power demand that is
satisfied from the grid, which captures the increasing marginal
cost for the operator as demand load increases; (ii) we study the
online dynamic storage control problem by devising a stochastic
model for continually generated demands and completions, and
we consider minimizing long-term average cost. This model
is also novel in the literature. We derive a threshold control
policy that attempts to maintain balanced power consumption
from the grid by adaptively managing the storage device charge
and discharge processes, and by satisfying part of the demand
from the grid or the storage device. We prove that the policy is
asymptotically optimal as the battery storage capacity becomes
large, and we numerically show that it performs quite well
even for finite storage capacity; (iii) We study the off-line
control problem over a finite time horizon, where the power
consumption to be satisfied at each time is known a priori, and
we use Dynamic Programming to solve it; (iv) we extend the
model, approach and structure of the optimal policy to account
for a renewable source that feeds the storage device.

The rest of the paper is organized as follows. In section II
we study the online control problem; we show the optimality of
the proposed threshold policy, and we present an extension that

includes a renewable source which feeds the storage device.
In section III we solve the off-line problem, in section IV
we present numerical results, and in section V we conclude
our study. The terms “battery” and “storage device” are used
interchangeably with the same meaning in the paper.

II. THE ONLINE ENERGY STORAGE CONTROL PROBLEM

A. System model

1) Power demand arrival and service processes: In the
online version of the problem, power demand requests are
generated continually and arrive at the grid operator controller
according to a Poisson process, with average rate λ requests
per unit of time. The time duration sn of each power demand
request n = 1, 2, . . . is a random variable that is exponentially
distributed with parameter s, i.e. Pr(sn ≤ x) = 1 − e−sx,
x ≥ 0. Equivalently, the mean request duration is 1/s time
units, and s is the average service rate for power demand tasks.
Further, let pn denote the power requirement of demand n.
These assumptions are motivated for mathematical tractability
as they facilitate the derivation of the optimal policy, yet they
are also close to reality, as they capture the burst of arriving
requests and their different durations. Denote by P (t) the
amount of power consumption on the grid at time t as a result
of the process above.

Consider the system above, first without the storage device.
If the power requirement of each task is 1, the instantaneous
power consumption, P (t) is the number of active demands at t.
Under the assumptions stated above for the arrival and service
processes, P (t) is a continuous-time Markov chain. In fact,
since each power demand task is activated upon arrival, P (t)
is the occupation process of anM/M/∞ service system. From
state P (t), there are transitions to state:
• P (t) + 1 with rate λ, when new demand requests arrive.
• P (t) − 1 with rate P (t)s, when one of the current P (t)

active demands is completed.
The steady-state probabilities qi = limt→∞ Pr(P (t) = i), for
i = 1, 2, . . . , on the number of active power demand tasks are
obtained from equilibrium equations as:

qi =

(
λ

s

)i

·
e−λ/s

i !
, (1)

which is Poisson distributed with parameter λ
s . Thus, the ex-

pected number of active requests at steady state is E[P (t)] = λ
s ,

where the expectation is with respect to the stationary Poisson
distribution of P (t).

The extension to different power requirements of demands
goes as follows. The power requirement of each demand task,
P̂ is a random variable with a discrete or continuous probability
distribution, and it is independent from process N(t) that shows
the number of active demands. Let E[P̂ ] be the average task
power requirement. Power consumption at time t is P (t) =
P̂ ·N(t), and the average power consumption at steady state is
E[P (t)] = λ

s E[P̂ ].
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Fig. 1. Overview of system model with the energy storage device, the charging
and discharging process, and the interaction with grid consumption.

2) Energy Storage Device: There exists a electric storage
device (battery) of storage capacity Em KWhs available to the
grid operator. Time is divided into slots of unit size. At each
time slot t, the battery may be charging or discharging. Let
E(t) be the stored amount of energy at the beginning of slot t.
Define the decision variable h(t) as the rate at which the battery
is charged at time t, with the following convention. If h(t) > 0,
the battery charges, and energy flows into it from the grid with
rate h(t). This in turn implies that the total grid consumption is
h(t) plus the power demand P (t) that is served due to requests
arising as above. Thus the total amount of power demand load
that is served by the grid is P (t)+h(t). If h(t) < 0, the storage
device discharges, namely energy flows out of the battery at rate
|h(t)|, and it is used to serve part of the demand load P (t) on
the grid. Hence, the amount of power demand that is actually
served from the grid is P (t) + h(t) < P (t), since a portion
of the power demand is served from the battery. The model is
depicted in Fig. 1.

The level of stored energy at the battery evolves with time
as E(t + 1) = E(t) + h(t). Since it is 0 ≤ E(t) ≤ Em at all
times t, it becomes evident that h(t) must satisfy:

−E(t) ≤ h(t) ≤ Em − E(t) , ∀ t . (2)

In order to demonstrate our approach, we assume there exist
no further constraints on maximum charging and discharging
rate other than those implied by (2). We also assume there
exists no switching cost in terms of delay for transferring power
demands from the grid to the battery and vice versa. The former
transfers take place when we decide to discharge the battery,
and the latter occur when the battery empties while some tasks
are served.
3) Cost Model: Let X(t) = P (t) + h(t) denote the total

consumed power on the grid at time t. This is the sum of active
demand tasks that are served by the grid, plus the charging
rate of the battery, if the latter is positive. We denote the
instantaneous operator cost associated with power consumption
X(t) at time t as C(X(t)), where C(·) is an increasing,
differentiable convex function. Convexity of C(·) reflects the
fact that the differential cost of grid power consumption for the
electric utility operator increases as demand increases. That is,
each unit of additional power needed to satisfy the increasing
demand becomes more expensive to obtain and make available

consumption, x
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Fig. 2. The cost as a piece-wise linear convex function of the grid load.

to the consumer. For instance, supplementary power for serving
high demand may be generated from expensive sources (e.g. gas
micro-turbines), or it may be imported at high prices from other
countries. The cost may also be a piecewise linear function,
where the different slopes of the linear segments represent
different classes of power consumption (Fig. 2).

B. Problem formulation

At the beginning of each time slot t the controller observes
the total grid consumption level X(t) (and thus, also P (t)),
and the energy level E(t). The communication between the
controller and the battery takes place through a high-speed
connection with zero delay via a smart device attached to the
battery which keeps track of battery level E(t). At each time
slot t, the controller needs to decide whether it will charge
or discharge the battery and how much. If the battery will be
discharged, part of the demand P (t) on the grid is served from
the battery energy, and X(t) < P (t) If the battery will be
charged, the load on the grid is P (t) plus the decided charging
rate of the battery.

Denote the system state at time t as x(t) = (P (t), E(t)).
For now, assume that all quantities are restricted to integer
values. Let the initial state be x(0) = (P (0), E(0)). The long-
run average cost associated with a policy π is:

Jπ(x(0)) = lim
T→+∞

E
π
x(0)[

1

T

T−1∑
t=0

C
(
P (t) + h(t)

)
] , (3)

where the expectation is with respect to the randomness of P (t)
and the one induced by a policy π on the state process that starts
from state x(0). A policy π is a way of selecting variables
{h(t)}t=0,1,... subject to the evolution equation, E(t + 1) =
E(t) + h(t), and subject to constraint (2).

A policy π∗ is optimal if it minimizes (3) over all policies
satisfying the constraints above. Under the assumptions above
on arrival and completion process, the problem of minimizing
the long-run average cost (3) is cast as a discrete-time Markov
Decision Process (MDP).

Equivalently to the problem of minimizing the cost in (3),
we may consider the corresponding problem associated with
the β-discounted cost, where 0 < β < 1 is a discount factor.
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Fig. 3. Extension to the model, with a renewable source feeding the battery.

Theβ-discounted cost for policy π is defined as:

V β
π (x(0)) = E

π
x(0)[

∞∑
t=0

βtC
(
P (t) + h(t)

)
] . (4)

The dynamic programming equation is:

V (P (t), E(t)) = min
−E(t)≤h(t)≤Em−E(t)

{
C
(
P (t) + h(t)

)
+βλC

(
P (t) + 1, E(t) + h(t)

)
(5)

+ βsP (t)C
(
P (t)− 1, E(t) + h(t)

)}
.

C. An Asymptotically Optimal Control Policy

Instead of proceeding with solving the MDP problem above,
we derive a simple policy and show that it is asymptotically
optimal for large storage capacity values. In section V we
numerically verify that the policy performs quite well even for
finite storage capacity values.

Consider the following dynamic control policy. There exists
a threshold, P0. Each time a new demand request arrives, the
controller checks P (t). If P (t) ≤ P0, then all active demand
requests are served by the grid energy, and a decision to charge
the battery is taken, with charging rate h̃(t) = P0 − P (t). If
P (t) = P0, then the battery is not charged. If the charging de-
cision is taken say at time t1, and charging takes place between
times t1 and t2 (where t2 is dictated by a new event occurrence
such as arrival or service completion, or empty battery), the
battery energy level is E(t2) = E(t1) + h̃(t1)(t2 − t1).

On the other hand, if P (t) > P0, a decision to discharge the
battery is taken, with rate h̃(t) = P (t)−P0, until the next event.
Again, if discharging takes place between times t1 and t2 and
the initial decision to discharge was at t1, then E(t2) = E(t1)−
h̃(t1)(t2 − t1). Each time a demand request that is served by
the grid is completed, or the battery energy becomes zero, the
controller again checks P (t) and the same control about battery
charging or discharging is applied. Whenever E(t) = 0 during
the procedure of discharging, the controller returns back to the
grid the requests that were served by the battery at that time t.
The policy described above is summarized as follows:
• If P (t) ≤ P0, charge the battery with rate P0 − P (t).
• If P (t) > P0, discharge the battery with rate P (t)− P0.

Since P0−P (t) can take positive or negative values, the policy
above, which we denote by (P) is succinctly described as:

h(t) = max
{
− E(t), P0 − P (t)

}
. (6)

As will be shown next, the optimal threshold is P0 = Pav =
E[P (t)] = λ

s . Note that for the long-term average cost, we have
the following lower bound from Jensen’s inequality:

E[C
(
P (t) + h(t)

)
] ≥ C

(
E[P (t) + h(t)]

)
. (7)

Theorem 1: Policy (P) is asymptotically optimal, in the sense
that its performance converges to the lower bound (7) as Em →
∞, and therefore it minimizes the long-term average cost (3).

Proof: We provide a sketch of the proof. The sequence
of events defined by {P (t) − P0 ≥ E(t)} has diminishing
probability as Em → ∞. This is because the values of E(t)
increase in general as well. Recall that the feasible controls set
at each time t is such that −E(t) ≤ h(t) ≤ Em − E(t). For
increasing values of energy storage Em, h(t) takes values in the
interior of this set with probability that approaches 1. Indeed,
h(t) < Em − E(t) as Em → ∞, since the battery capacity
increases. Furthermore, due to the previous argument, it is
h(t) > −E(t) with probability that approaches 1. This means
that, while discharging the battery, there is always sufficient
energy such that the battery is almost never empty.

For the control process h(t), we verify that
limEm→∞ E[h(t)] = 0, since the battery charges with
rate P0 − P (t) whenever P (t) < P0, and it discharges with
rate P (t)−P0 when P (t) > P0. For P0 = Pav = E[P (t)] = λ

s ,
the charging and discharging events each take place for half
the amount of time in the long-run on average, and thus
E[h(t)] → 0. Therefore, under that policy, the consumption
from the grid is constant and equal to E[P (t) + h(t)] = λ

s ,
and the lower bound (7) is reached.

D. Extension to the model: Renewable source
We consider the following extension to the model. There

exists a renewable energy source which feeds the battery.
Such a setup is expected to be commonplace in the future,
with photovoltaic or other renewable sources attached to the
battery. Denote by R(t) the renewable source energy generation
process, which is assumed to be an arbitrary stationary process
with expectation Rav = E[R(t)]. The rest of the model is the
same as the one above, and the system is depicted is Fig. 3.
The battery energy level equation is:

E(t + 1) = E(t) + R(t) + h(t) , (8)

and the feasible controls set at time t is such that, −R(t) −
E(t) ≤ h(t) ≤ Em − E(t) − R(t). This system is equivalent
to one without the renewable source, where h(t) is substituted
by h(t)−R(t). It can be shown that the policy that minimizes
long-term average cost for the setup with a renewable source
is as follows:
• If P (t) ≤ Pav −Rav , charge the battery with rate Pav −

Rav − P (t).
• If P (t) > Pav−Rav , discharge the battery with rate P (t)−

Pav + Rav.
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Fig. 5. Performance of the proposed energy storage control policy as a function
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Observe that if Pav −Rav < 0, battery charge will not take
place since in that case the renewable source fully covers the
power demand requirements.

III. THE OFF-LINE PROBLEM

In this section, we will use notation Pt, Et, Xt, ht instead
of P (t), E(t), X(t), h(t). In the off-line problem, we are given
the initial battery energy E0 and power consumption levels
P0, . . . , PT−1, and we want to find the sequence of controls
h0, . . . , hT−1 to minimize the total cost,

T−1∑
t=0

C(Pt + ht) , (9)

subject to Et+1 = Et + ht and −Et ≤ ht ≤ Em − Et. The
Bellman equation for the cost-to-go at stage T − 1 writes

JT−1(PT−1, ET−1) = min
−ET−1≤hT−1≤Em−ET−1

C(PT−1+hT−1).

(10)
Since C(·) is increasing, the minimizing value of hT−1 is
h∗T−1 = −EN−1, and thus JT−1(PT−1, ET−1) = C(PT−1 −
ET−1). For t = 0, . . . , T − 2, the Bellman equation for the
cost-to-go is:

Jt(Pt, Et) = min
−Et≤ht≤Em−Et

[C(Pt+ht)+Jt+1(Pt+1, Et+ht)]

(11)

For each t, the minimizing h∗t is:
• h∗t = −Et (discharge until the battery is empty), or
• h∗t = Em − Et (charge until it is full), or
• h∗t ∈ (−Et, Em−Et), in which case the derivative of the

expression in (11) in the brackets with respect to ht is set
to zero.

The optimal control at that stage will emerge by comparing the
cost to go for the three cases above and choosing the solution
that corresponds to the minimum cost-to-go.

For t = T − 2, by applying (11) together with ET−2 +
hT−2 = ET−1, we get:

JT−2(PT−2, ET−2) = min
−ET−2≤hT−2≤Em−ET−2

[C(PT−2 + hT−2)

+JT−1(PT−1, ET−2 + hT−2)]

= min
−ET−2≤hT−2≤Em−ET−2

[C(PT−2 + hT−2)+C(PT−1 − ET−1)]

= min
−ET−2≤hT−2≤Em−ET−2

[C(PT−2 + hT−2)

+C(PT−1 − ET−2 − hT−2)] .

There are three possibilities:
1) The minimizing h∗T−2 = −ET−2. Then the cost

J(PT−2, ET−2) is C(PT−2 − ET−2) + C(PT−1).
2) The minimizing h∗T−2 = Em − ET−2. Then the cost is

C(PT−2 + Em − ET−2) + C(PT−1 − Em).
3) The minimizing h∗T−2 ∈ (−ET−2, Em − ET−2). In that

case, by setting the derivative of the cost to zero, we find:

h∗T−2 =
PT−1 − PT−2 − ET−2

2
(12)

and the cost is 2C(PT−1+PT−2−ET−2

2 ).
We can proceed backwards in the same fashion. At each

stage t, we substitute Jt+1(·). When reaching stage 0, we can
compute h∗0 since we know E0. We can then go forward by
replacing that to find h∗1, . . . , h

∗
T−1. Similarly to the online

problem, the solution balances as the derivative of cost as much
as possible, given the battery capacity constraints.

IV. NUMERICAL RESULTS

In order to evaluate the performance of our policy for finite
storage capacity, we first compute the long-term average cost
E[C

(
P (t) + h(t)

)
] and compare it to the lower bound in (7).

Our simulation scenario ran for a horizon T = 240hrs. The
power demand arrival and service processes are Poisson with
average arrival rate λ = 200 requests / hour and average service
rate s = 2 requests / hour, i.e. the average demand duration
is 1/s = 1/2 hour. Also, the average power requirement per
demand was 1KW . The power demand over time is depicted
in Fig. 4. Thus, the average demand load is E[P (t)] = λ

s =
100KW. We consider cost function C(x) = x2.

In Fig. 5, we show the cost of the proposed policy (P) for
different values of storage capacity Em. Recall that policy
(P) was constructed by ignoring storage capacity constraints,
and it seeks to maintain balanced power consumption at all
times. It can be observed that the performance of the policy is
optimal for battery capacity Em ≥ 24KWhs, since the resulting
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Fig. 7. Total instantaneous grid load for Em = 10KWhs and Em = 24KWhs.

cost for these values reaches the lower bound. As anticipated,
the average cost decreases as Em increases, and it ultimately
converges to the lower bound, (λ/s)2.

Next, we compare two scenarios. One with battery capacity
Em = 10KWhs and one with Em = 24KWhs. In Fig. 6 we
show instantaneous residual stored energy for the cases above.
When Em = 10KWhs, the battery is fully discharged (empty)
for a total of 69 times. On the contrary, for Em = 24KWhs,
the battery is never fully discharged. In Fig. 7 we depict the
total instantaneous load on the grid, X(t) = P (t) + h(t) for
the two cases above. Observe that if Em = 10KWhs, the total
load exceeds Pav = 100 for a total of 69 times as well. Clearly,
these are the times when the battery empties, and the load that
the battery was serving is moved to the grid. On the contrary,
for Em = 24KWhs, the battery is never fully discharged, and
X(t) remains constant and equal to Pav = 100. Charging and
discharging for both cases are shown in Fig. 8.

We also seek the value of the minimum required storage
capacity for which our policy reaches the lower bound in (7),
as a function of demand load λ/s. Fig. 9 presents our findings.
The minimum required battery capacity can be seen to increase
in a concave-like fashion in four out of the five points.

V. CONCLUSION

We proposed a storage control policy that is asymptotically
optimal for large storage capacity and performs quite well even
for finite capacity values. In the future, we plan to compute
explicitly the optimal policy for finite capacity. An enhanced
model that would include e.g. a switching cost due to frequent
battery charging and discharging is also worth studying.
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Instantaneous charging/discharging power for Em=10 KWhs.
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Fig. 8. Instantaneous charging / discharging power for Em = 10KWhs and
Em = 24KWhs.
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Fig. 9. Minimum required capacity Em for which the policy is optimal,
versus the demand load.
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