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Abstract—The development of low-cost renewable energy gen-
erators transforms households into electricity prosumers. Given
that generation from renewable sources is highly volatile and does
not perfectly match the daily demand pattern of households, elec-
tricity storage has been proposed for balancing energy generation
and demand. In this work, we suggest that, due to the high cost
of Energy Storage Systems (ESS), prosumers should deploy and
share ESSs in a collaborative fashion. This will allow them to
leverage the temporal diversity in their energy generation and
consumption patterns, so as to reduce the cost paid to the main
grid and even to cover the deployment cost of ESSs.

We address the question ”How much storage capacity should
be placed and in which locations in the distribution network?”.
In order to answer this question, we need also to consider how
much each prosumer should charge and discharge each deployed
ESS. The solution of this joint ESS placement-dimensioning and
utilization problem depends on the energy distribution losses,
expected electricity prices, and the diversity of prosumers’ pro-
files. Accordingly, we employ the Nash bargaining framework to
determine how this cost should be shared in a fair, and hence self-
enforcing, fashion among prosumers. Based on realistic demand
and generation traces, we show that collaborative prosumption
of energy through properly placed ESS can lead to significant
savings of up to 50% compared to a non-cooperating setting.

I. INTRODUCTION

Motivation. The decreasing cost of renewable Distributed

Energy Resources (DER) motivates individuals to install

small-scale units at their premises [1]. By deploying a so-

lar panel or a wind turbine, a household can minimize its

dependence on the main grid and eventually reduce its elec-

tricity bill. In this context, each household is both an energy

consumer and an energy producer, i.e. a prosumer. However,

more often than not, energy generation and demand are not

perfectly matched in the time domain (Fig. 1). This results in

temporal energy deficits and surpluses and hinders the energy

savings that DERs can offer.

Selling the energy surplus to the main grid, and buying in

case of deficit, addresses this issue only partially since it is

not always an optimal or even a feasible solution. Namely,

in many countries main grid operators buy electricity from

prosumers (when they have surplus) at low wholesale prices

and sell energy to them at higher retail prices1. Besides, houses

located in isolated areas may not be connected with the main

grid [2], hence making such transactions infeasible. To deal

with this inefficiency, installation of energy storage systems

1In Australia for example [6], retail electricity price is 30 cents/kWh for
residential users, while any surplus from DERs is being sold to the main grid
at the wholesale price of 6 cents/kWh
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Fig. 1. Typical daily demand of a household and power generation patterns
from a residential solar panel and a wind turbine. Households are characterized
by diverse demand profiles resulting from the different daily schedules of their
habitants [18]. Diversity is also observed in the generation side depending on
the type of renewable installed [16],[17].

(ESS - hereinafter referred also as batteries) in close proximity

with DERs has been proposed. An ESS accumulates energy

surpluses, which can be then used to satisfy excess demand.

Given though the current high monetary cost of ESSs, the

option of installing one independently by each household is

out of question [3].

Instead, we propose here a collaborative scheme where

residential users form communities that share the costs and

benefits of distributed energy generation and storage. We

consider a small-scale community (within the microgrid)

which can range from a large neighborhood to a small town.

Households are characterized by diverse demand profiles given

the different daily schedules of their inhabitants. Similarly,

energy generation from a DER is intermittent within a day and

its pattern is mainly determined by the type of the renewable

and its location (Fig. 1). Prosumers can exploit temporal

diversity of power generation and demand through appropriate

placement of batteries that enables them to exchange any

electricity surplus with each other and hence to achieve

significant cost reduction.

The main question that arises in this context is how much

storage capacity should be installed and at which location

within the microgrid so that collaborative sharing by pro-

sumers is most beneficial and fair. In order to answer this

question, we need to derive, at the same time, the charging -

discharging decisions of prosumers for the deployed ESSs that

are realized in a smaller time scale. In turn, these decisions are

constrained by the actual needs of consumers and the energy

generation of their DERs. Clearly, the actual values of these



quantities are not known in advance, i.e., at the time of ESS

placement and dimensioning decisions. Nevertheless, recent

measurements [4]-[5] indicate that both demand and genera-

tion follow certain patterns. These findings have been exploited

by industry, for designing commercial storage solutions [2],[6]

and by academia for studying storage-related problems [7],[8].

We follow a similar approach here and propose a solution

framework for the ESS placement and dimensioning, for any

given user and DER generation pattern.

Optimal placement is affected by distribution losses. These

typically amount to 7% of the transferred energy but may

even reach 55% in extreme cases [9]. Placing ESS close to

generation locations minimizes losses while charging, but it

leads to increased losses when energy is transferred to remote

locations. On the other hand, a centrally placed battery enables

the aggregation of a larger number of prosumers with more

temporally diverse energy generation and demand patterns.

The community-wide objective is to minimize the total cost for

all prosumers, which captures both the electricity cost paid to

the main grid and the ESS deployment cost. A still unanswered

question though is: how should this cost be shared among
users of the community in a fair fashion, so as to incentivize
their participation in the collaborative energy prosumption
scheme?

Collaborative Prosumption of Energy. The proposed

scheme is inspired by the concept of collaborative consump-

tion (CoCo) that leverages trusted and networked communities

to optimally exploit scarce and hence expensive resources. The

term was coined in 1978 by Felson [10] and has been recently

revisited [11]. CoCo is a cost-efficient and eco-friendly con-

sumption model based on sharing, swapping, bartering, trading

or renting resources, which stands in contrast to traditional

ownership-based models. Today, an increasing number of

companies is building on this idea. Prominent examples are

peer-to-peer direct rental services such as Airbnb2.

The advent of smart grid enables the design of similar

models for energy demand and generation within a community

of prosumers. Storage of energy and distribution automation

enables residential users to exchange electricity with each

other. The former smooths out imbalance of demand and

supply, while the latter determines the flow of power within the

distribution network. For small-scale energy distribution net-

works, the short spatial and social distance of the participants

makes possible the design of CoCo models for electricity.

Related Work. The problem of optimal charging and

discharging a single ESS under time-varying electricity prices

has recently attracted significant research interest (see [12],

[13] and references therein). In contrast, the problem of op-

timal dimensioning and placing of electricity storage systems

within the distribution grid remains quite unexplored. In this

direction, the work in [8] investigates the voltage regulation

and peak-shaving performance benefits arising from battery

placement under an annual monetary budget constraint, when

energy transfer losses are negligible. In general though, opti-

mal battery placement and dimensioning decisions are affected

2More info about these companies and similar business cases can be found
in http://www.collaborativeconsumption.com/.

by the distribution losses, which are important in low-voltage

distribution networks.
The problem of placing a fixed amount of storage capacity

in the grid is studied in [7]. The objective is to minimize

grid operating cost assuming however that there is no cost

for storage devices. In a similar framework, a genetic al-

gorithm named PLATOS is developed in [14] to derive the

type, size and placement location of storage devices so as to

optimize certain criteria such as improving voltage profiles or

preventing overloads. In contrast to our work, PLATOS is a

proprietary heuristic algorithm. Besides, both [7] and [14] do

not consider how the investment cost should be shared among

community members. The benefits arising from cooperation

are studied in [15] but for the scenario of interconnected

microgrids that directly exchange power with each other.

However, neither the potential of energy storage nor the arising

challenges are addressed.
Contributions. In this work, we introduce the concept of

collaborative energy prosumption tailored for the smart grid.

We formulate and solve the respective ESS deployment cost

minimization problem. The size of the battery that will be

placed in each facility, as well as the subset of the prosumers

that will use it, depend on their energy generation and demand

profiles, and on energy distribution losses. Ideally, one would

like to match prosumers with diverse profiles located in close

proximity.
Once the optimal storage placement and utilization has been

derived, prosumers must agree on how they will share the

induced total energy and battery cost. Clearly, each prosumer

should be motivated by paying less when she participates in

the community compared to the respective cost if she inde-

pendently deploys an ESS (or simply if she buys energy from

the main grid). Moreover, prosumers expect to receive a fair

share of the total cost reduction achieved by the community.

Instead of equally sharing the costs among the participating

users, we employ the Nash bargaining solution concept to find

the fair, and hence self-enforcing, cost-sharing solution. The

main contributions of this work are:

• We propose a model for collaborative prosumption of

energy in a community that collectively deploys and uses

energy storage systems.

• We formulate the problem of ESS placement and dimen-

sioning, which should be jointly solved with charging

- discharging decisions, based on prosumers’ expected

demands and energy generation. This is a numerically

computable framework that is applicable to different

prosumer profiles and microgrid architectures, based on

consumption and production statistics [16], [17],[18].

• We employ Nash bargaining theory to find the fair share

allocation of the benefits from the energy and battery cost

reduction that is achieved by the community.

• Our trace-based simulations reveal that, for the current

and projected future cost of batteries, the proposed model

outperforms significantly the case where each prosumer

acts independently. We also investigate how the com-

munity benefit is affected by factors such as energy

distribution losses and the diversity of prosumer profiles.

The rest of the paper is organized as follows. In Section
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Fig. 2. Schematic diagram of a semi-urban neighbourhood consisting of
users equipped with renewables. Batteries indicate possible locations for ESS
deployment.

II we introduce the system model and present a motivating

numerical example that highlights the various problem trade-

offs. In Section III we formally introduce the collaborative

energy prosumption problem and define the respective Nash

bargaining solution concept that yields a notion of fair cost

allocation. Finally, we present numerical results based on real

traces in Section IV and conclude our study in Section V.

II. SYSTEM MODEL

We consider the microgrid distribution network of Fig. 2

that comprises a set I of I = |I| energy prosumers and a set

N of N = |N | predetermined locations, e.g. junction boxes,

where an Energy Storage System (ESS) can be deployed.

Each prosumer owns a renewable Distributed Energy Resource

(DER), such as a wind-turbine or a solar panel, and has certain

time-varying energy needs. We assume time-slotted operation

and we study the system for a time period T consisting of T
slots. Typical duration of a slot is 1-2 hours. Nevertheless, our

framework is applicable to scenarios of any time granularity,

which is determined by the input data.

Prosumer Model. Each prosumer i ∈ I in each time slot

t may have an energy surplus or an energy deficit based on

whether her DER produces more or less energy than her needs.

We introduce the variables sti ≥ 0 and dti ≥ 0 to denote surplus

and deficit respectively. We define also the vectors:

si = (sti : t = 1, 2 . . . , T ) di = (dti : t = 1, 2 . . . , T ), i ∈ I
Clearly, for any given slot t, the surplus and deficit of

each prosumer i cannot be both positive (i.e., stid
t
i = 0).

Also, empirical and statistical data [19] indicate that typically

individuals follow a specific routine, and hence the expected

energy demand pattern of households can be to some ex-

tent characterized. This is true in particular for larger-scale

prosumers e.g. industries. In addition, the expected energy

generation pattern of each DER can be approximated by an

average time sequence based on historical data [20]. The

extraction of expected demand and generation patterns is

performed through estimation techniques from historical data

regarding the behavior of renewables/users, but this is beyond

the scope of this work. Notice also that shared batteries

serve as aggregation points that smooth out uncertainty by

aggregating demand and generation of several closely-located

prosumers.

In case of surplus, the excess energy of the prosumer can

be used to charge the installed batteries. We denote with xt
in

the amount of energy transferred from prosumer i to battery

n in slot t and we define the respective charging matrices:

xi = (xt
in ≥ 0 : n ∈ N , t = 1, . . . , T ), ∀ i ∈ I

Similarly, when dti > 0, the prosumer can use energy from

the installed batteries to satisfy her additional energy needs.

We denote with ztni the energy retrieved from battery n by

prosumer i during slot t, and we introduce the respective

discharging matrices:

zi = (ztni ≥ 0 : n ∈ N , t = 1, . . . , T ), ∀ i ∈ I
The amount of energy transferred from prosumer i ∈ I

to battery n ∈ N experiences losses which depend on their

distance and the amount of transferred energy [21]. The energy

loss function θin(x) denotes the actual amount of energy that

reaches (i.e., excluding the losses) battery n ∈ N , when x
units of energy are transferred from prosumer i ∈ I. A typical

such function is [15], [21]:

θin(x) = x− �in(x) = x− βx− Rin

V 2
x2, (1)

where the losses �in(·) are determined by the resistance Rin >
0 of the distribution line connecting prosumer i and ESS n,

the corresponding voltage V , and parameter β > 0 capturing

(voltage) transformation losses. For the distribution grids R =
0.2 Ohms per km, V = 22kV and β = 0.02 are typical values

[21].

Depending on the microgrid scale, prosumers and batteries

may be close enough so that no transformation from low to

medium/high voltage is involved, i.e., β = 0. On the other

hand, low-voltage (thus high-current) power transfer incurs

comparatively high transfer losses per unit of distance. In other

scenarios, e.g., for rural settings, transformation losses may

be non-negligible. Clearly, different microgrid architectures

are characterized by different energy transfer loss functions.

Hereinafter, we formulate and discuss the problem using a

generic concave loss function θin(x).
ESS Model. Each facility n ∈ N is a candidate location

for deploying an Energy Storage System. The decision to be

made is whether an ESS will be placed in a certain facility

and, if so, what should be its capacity. We denote with yn ≥ 0
the capacity of the ESS deployed in facility n ∈ N , and define

the respective ESS deployment vector y = (yn ≥ 0 : n ∈ N ).
Notice that battery deployment is a one-shot decision (an

ESS is either deployed in a certain location for the entire time

horizon T or not), while the charging - discharging decisions

are taken on a slot-by-slot basis. The deployment is realized

once at a cost of w ≥ 0 per unit of storage capacity, which

can be interpreted as the normalized (i.e. projected on the time

horizon T ) monetary cost of purchase and maintenance of the

battery [22].

Each ESS n ∈ N has accumulated at slot t a certain amount

of energy qtn which depends on the charging and discharging

decisions of prosumers in the previous time slots. We can

calculate this amount using the recursive formula:

qt+1
n = min{yn, max{qtn +

∑

i∈I
θin(x

t
in)−

∑

i∈I
ztni, 0}} (2)

Clearly, the accumulated energy can neither exceed the capac-

ity yn of the battery, nor can it be negative.

Main Grid. The microgrid is connected to the main grid,

hence prosumers can buy energy whenever their deficit cannot

be satisfied by an ESS. Specifically, we denote with bti the

amount of energy that prosumer i retrieves from the main grid



Fig. 3. A migrogrid with 2 prosumers and 3 battery facilities. The surplus
and deficit vectors are s1 = (2, 0, 2, 0, 4, 0, 3, 0), s2 = (0, 2, 0, 5, 0, 3, 0, 2)
and d1 = (0, 5, 0, 6, 0, 5, 0, 1), d2 = (5, 0, 1, 0, 2, 0, 6, 0). The distribution
loss functions are θi3(x) = 0.9x, θ11(x) = x, θ12(x) = 0, θ21(x) =
0, θ22(x) = x. The energy and battery costs for cases A, B and C are
(JA

1 = 17p0, JA
2 = 14p0), (JB

1 = 8p0 + 4w, JB
2 = 5p0 + 7w) and

(JC
12 = 11.8p0 + 1.8w) respectively.

during slot t. We define also the respective vector bi = (bti ≥
0 : t = 1, 2 . . . , T ), ∀ i ∈ I.

We assume that energy needs of prosumers are inelastic and

hence the following constraint should be satisfied:

bti +
∑

n∈N
θin(z

t
ni) = dti, t ∈ T , i ∈ I

The main grid is assumed to charge a fixed price p0 > 0
per unit of energy at all times, leading to a total cost of∑

t∈T p0b
t
i for prosumer i ∈ I. Under such a fixed pricing

model, prosumers buy from the main grid only to satisfy their

current needs (i.e., ESSs are not charged by the main grid).

Motivating Numerical Example. Next, we provide a

numerical example that highlights the various aspects and

tradeoffs of the problem. Consider the toy microgrid consisting

of I = {1, 2} prosumers and N = {1, 2, 3} battery facilities

depicted in Fig. 3. We study the system for a single day,

divided in, say, T = 8 slots. In this setting, there are three

possible scenarios for the operation of the microgrid.

• Case A : The users have no batteries and buy (indepen-

dently) energy from the main grid when they have energy

deficits. Let JA
i be the cost paid by i to the main grid.

• Case B : Each user deploys her own battery which

is charged whenever she has surplus and discharged

whenever she has an energy deficit. Let JB
i be the total

cost paid for the energy from the main grid and battery

deployment.

• Case C : Users collaborate and deploy in a central point a

battery which they share and jointly charge and discharge

according to their energy surpluses and deficits. The total

cost in that case, JC
12 depends also on the losses.

The cost values for each case and the basic system parameters

are depicted in Fig. 3. In this setting, we observe that, (i) the

total cost in Case C is always smaller than that in Case B,

i.e. JC
12 < JB

1 + JB
2 for any p0, w. (ii) depending on the

values of p0 and w, prosumers may either benefit (JB
i < JA

i )

or not (JB
i > JA

i ) from using batteries. For example, when p0
is much smaller than w a prosumer may prefer to cover her

deficit directly from the main grid. (iii), for larger distribution

losses and/or when the energy generation and consumption

patterns of the prosumers are less diverse, it may be beneficial

for each user to deploy her own battery.

Therefore, the critical questions for this problem are the

following: (i) What is the battery placement-dimensioning

policy y, and the charging-discharging policy (xi, zi)i∈I that

minimize the total cost for energy use and battery deployment

for a community of prosumers? (ii) How should this reduced

cost be shared in a fair, and hence self-enforcing fashion

among prosumers? To answer the first question we formulate

and solve an optimization problem. For the second question,

we model the collaborative prosumption game as a multi-

person Nash bargaining game.

III. THE COLLABORATIVE PROSUMPTION GAME

The Minimum Cost Problem. The objective of the pro-

sumers is to minimize the cost for the energy they buy from

the main grid and the cost for battery deployment. Specifically,

the optimal policies can be derived from the solution of

the following Collaborative Prosumption (CPro) optimization

problem:

min
(xi,yi,zi,bi)i∈I

∑

t∈T

∑

i∈I
p0b

t
i + w

∑

n∈N
yn

s.t.

qt+1
n = qtn +

∑

i∈I
θin(x

t
in)−

∑

i∈I
ztni, n ∈ N , t ∈ T (3)

0 ≤ qtn ≤ yn, n ∈ N , t ∈ T (4)

bti +
∑

n∈N
θin(z

t
ni) = dti, i ∈ I, t ∈ T (5)

∑

n∈N
xt
in ≤ sti, i ∈ I, t ∈ T (6)

∑

i∈I
ztni ≤ qtn, n ∈ N , t ∈ T (7)

xt
in ≥ 0, ztni ≥ 0, bti ≥ 0, yn ≥ 0n ∈ N , i ∈ I , t ∈ T (8)

where p0 and w are the main grid energy price and the

projected battery cost respectively3. Constraints (3)-(4) are the

decomposed version of (2), equation (5) captures the fact that

demands are inelastic and constraint (6) says that the total

charging performed by a prosumer within a slot is bounded

by her respective surplus. Finally, constraint (7) dictates that

the retrieved energy from each battery is upper-bounded by

the accumulated energy in each time slot.

CPro is a problem with a linear objective function and

a convex and compact constraint set. The obtained solution

(x∗
i ,y

∗
i , z

∗
i , b

∗
i )i∈I yields a total cost:

Jcc =
∑

t∈T

∑

i∈I
p0b

t ∗
i + w

∑

n∈N
y∗n (9)

The value of Jcc decreases as the diversity of energy con-

sumption and generation patterns of prosumers increases. For

example, if the generation and consumption patterns of two

prosumers are symmetric, then they can fully satisfy each

other’s needs in each slot. Moreover, the total amount of

deployed storage depends on the relative values of battery and

energy cost. Finally, the battery placement depends on distri-

bution losses (for low losses, central locations are preferable).

The Bargaining Game. In order to study how the total

battery deployment and energy cost should be distributed

3The model can be directly extended to include battery installation costs.
This would transform the problem into an NP-hard facility location problem
[23], which can be solved by an exhaustive search method using, for example,
CPLEX. Notice that the ESS deployment and dimensioning problem is solved
offline.



among prosumers, we employ the Nash bargaining theory [24].

The so-called Nash bargaining solution (NBS) determines the

portion of jointly produced welfare each player should receive

so as to agree to cooperate with the other players. The NBS

is fair, self-enforcing and also Pareto optimal.

In detail, a bargaining problem among a set I of I = |I|
players is defined by the set of all feasible allocations (possible

outcomes) J ⊂ R
I , and the disagreement points D ⊂ R

I for

each player. For the CPro problem, the latter are the costs

incurred to the prosumers when they do not collaborate with

each other. For each prosumer i we can find the disagreement

cost Jd
i by solving CPro for I = {i} and N = {i}. Formally,

we define the bargaining problem GP = (I,J ,D) where the

set of possible outcomes is:

J = {(J1, J2, . . . , JI) :
∑

i∈I
Ji = Jcc, Ji ≥ 0, ∀ i ∈ I}

and D = {Jd
1 , J

d
2 , . . . , J

d
I }. The NBS is the vector J∗

N =
(J∗

i )i∈I derived by the solution of the following Nash bar-

gaining problem (NBP):

max
JN∈J

Πi∈I
(
Jd
i − Ji

)
(10)

s.t. Ji ≤ Jd
i , ∀ i ∈ I (11)

The NBP has certain desirable properties as it stated by the

following lemma.

Lemma 1: NBP admits always a unique optimal solution.

Proof: Objective function (10) is strictly concave since it

is a composition of (strictly) concave functions. Additionally,

the constraint set is compact, convex and non-empty. Notice

that constraint (11) can always be strictly satisfied by some

solution point. This holds because the collaborative solution

contains the independent (standalone) solution where each

prosumer acts on his own (placement and usage of battery per

prosumer), as a special case solution. The latter is achieved if

one sets the respective charging and discharging decisions of

the prosumer to zero for the other batteries.

Notice that here we have implicitly assumed that users are

risk-neutral and hence they have linear utility functions for cost

[24]. In general though, one can consider users with different

sensitivity in cost variations, e.g. being risk-averse. In this

case, the objective of the NBP will change by substituting Ji
with the respective utility functions, i.e., Ui(Ji). The solution

methodology however is the same.

IV. NUMERICAL RESULTS

In this section, we use real demand and generation traces in

order to quantify the benefits of collaborative energy prosump-

tion. We consider a neighborhood of 10 houses, each equipped

with either a solar panel or a wind turbine. For the wind-

turbine plants we use the wind-generation data of [16], while

for the photovoltaics we use data from [17]. Demand data for

each house are generated according to the synthetic electricity

consumption traces of [18]. We assume a fixed electricity price

p0 = 0.3 $/kWh, and that distribution losses are linear in the

amount of transferred energy and in distance.

Initially, we investigate the cases when collaborative place-

ment of energy storage within the distribution network is

preferable. In Fig. 4 we depict the impact of distribution

losses on the actual cost improvement
∑

i∈I Jd
i − Jcc due

to collaboration over the independent deployment at house

premises. Initially, we focus on the current market scenario

by using the typical battery price of 500 $/kWh (Fig. 4(a)).

Given that the lifetime of a battery is 5 years, we calculate

the corresponding normalized cost w. In order to investigate

the impact of temporal diversity of users’ demand-generation

profiles on cost improvement, we consider three scenarios:

a low-diversity, a medium-diversity and a high-diversity one.

We observe that diversity does increase the benefits of col-

laboration. In addition, low losses favour the collaborative

deployment of batteries, while placing batteries at the user

side is meaningful only for distant enough prosumers, as

indicated by the almost zero benefit when losses are high. In
the current status where battery deployment cost is significant,
cooperation is generally the dominant strategy.

Next, we depict in Fig. 4(b) a scenario based on the pro-

jected battery prices so as to investigate the future behaviour

of the collaborative prosumption approach. Given that battery

prices drop by a rate of 5% per year the depicted scenario

of a battery price of 100 $/kWh is not expected to happen

until 2030. In this case, due to lower battery cost, the benefits

of collaboration are less evident, and deploying batteries at

the user side is also a valid option. However, given that

distribution losses are generally low (significantly lower than

20% in developed countries), the collaborative prosumption

approach will be the road ahead for at least the next 20 years.

Finally, we consider the impact of battery cost w on the

total battery capacity installed, and the total cost that has to

be paid by the community. We consider a typical scenario

where losses to the most distant battery location are 7%. In

Fig. 5 we compare the total battery capacity and energy cost

achieved by the collaborative prosumption approach and the

non-cooperative reference strategy. As expected, high battery

prices lead to less electricity storage being deployed and higher

cost.

In both cases, battery placement reduces electricity cost

by covering energy deficits from stored energy, previously

generated by renewables. Collaborative prosumption though,

can further amplify the resulting financial benefits by enabling

users to exchange energy and by exploiting diversity of

demand and generation of different households. Thus, the
collaborative approach achieves a lower cost with less storage
capacity. In particular, in this scenario of low distribution

losses, collaboration leads to daily savings of 4$ (i.e. > 1200
$ annually), which is more than double the savings of the

reference strategy. Interestingly, the amount of battery installed

is generally a piece-wise constant function of battery cost,

indicating the robustness of battery placement in system pa-
rameter deviations. In a plateau, the cost reduction arises from

the smaller investment that is required for the same amount

of electricity storage.

V. CONCLUSIONS

This work provides a first understanding of the reasons that

hinder large-scale penetration of renewables and electricity

storage in the residential sector. We identified collaboration

of households as the missing piece that could eventually bring



0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Losses (%)

Co
st

 im
pr

ov
em

en
t (

in
 $

)

low diversity
medium diversity
high diversity

(a) The current setting of battery price w=500 $/kWh

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Losses (%)

Co
st

 im
pr

ov
em

en
t (

in
 $

)

low diversity
medium diversity
high diversity

(b) The future setting of projected battery price w=100 $/kWh

Fig. 4. Daily cost improvement due to user collaboration as a function of losses for scenarios of different demand - generation diversity across users.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

1

2

3
x 104

Non−normalised Battery price w ($/Wh)

Ba
tte

ry
 c

ap
ac

ity
 (i

n 
W

h)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
17

18

19

20

21

Non−normalised Battery price w (in $/Wh)

To
ta

l c
os

t J
 (i

n 
$)

no batteries
user side
collaborative

Fig. 5. Total capacity of installed batteries and the corresponding daily cost
for a scenario of low distribution losses.

electricity storage into the distribution network and unleash

the potential of renewable energy resources. We proposed a

collaborative prosumption scheme that exploits diversity of

demand and generation through batteries so as to minimize the

electricity cost of a community. Based on realistic generation

and demand data, we showed that collaborative battery deploy-

ment is meaningful even for the current high cost of batteries

and without any subsidy, while additional benefits may arise

from ancillary services enabled by collaborative storage. We

believe that our work paves the way for small-scale user-

centric collaborative energy prosumption architectures that

will exploit upcoming storage availability [3].

VI. ACKNOWLEDGEMENT

This work is supported by ERC08-RECITAL project, co-

financed by Greece and the European Union (European So-

cial Fund) through the Operational Program ”Education and

Lifelong Learning” - NSRF 2007-2013.

REFERENCES

[1] Elia (Belgium Electricity Transmission Operator), “U.S. Solar Market
Insight 2012 Year in Review”, www.seia.org/research-resources/us-solar-
market-insight-2012-year-review, 2012.

[2] DNV KEMA, “Sustainable off-grid Power Plant for Rural
Applications”, www.dnvkema.com/innovations/sustainable-energy-
resources/sopra/default.aspx, 2012.

[3] E. Wessof, “Germany on the Verge of a Subsidy for Energy Stor-
age”, www.greentechmedia.com/articles/read/Germany-On-The-Verge-Of-
A-Subsidy-For-Energy-Storage, April 2013.

[4] F. McLoughlin, A. Duffy, and M. Conlon, “Evaluation of time series
techniques to characterise domestic electricity demand,” Energy, vol. 50,
pp. 120–130, 2013.

[5] I. Stoyanova, M. Marin, A. Monti,“Characterization of load profile
deviations for residential buildings,” in Proc. of 4th IEEE/PES ISGT
EUROPE, 2013.

[6] RenewEconomy, “How Battery Storage Will Change Household
Energy Market”, http://reneweconomy.com.au/2013/how-battery-storage-
will-change-household-energy-market-47946, March 2013.

[7] C. Thrampoulidis, S. Bose, and B.Hassibi, “Optimal Placement
of Distributed Energy Storage in Power Networks”, arxiv CoRR,
arXiv:1303.5805, 2013.

[8] J. Tant, F.Geth, D. Six, P. Tant and J. Driesen, “Multiobjective Battery
Storage to Improve PV Integration in Residential Distribution Grids”,
IEEE Trans. on Sust. Energy, vol. 4, no. 1, pp. 182-191, 2013.

[9] The World Bank, “Electric Power Transmission and Distribution Losses”,
http://data.worldbank.org/indicator/EG.ELC.LOSS.ZS, 2012.

[10] M. Felson, and J. L. Spaeth, “Community Structure and Collaborative
Consumption: A Routine Activity Approach”, American Behavioral Sci-
entist, vol. 21, 1978.

[11] R. Botsman, and R. Rogers, “What’s Mine Is Yours: The Rise of
Collaborative Consumption”, HarperBusiness, 2010.

[12] I. Koutsopoulos, V. Hatzi, and L. Tassiulas, “Optimal Energy Storage
Control Policies for the Smart Power Grid”, in Proc. of IEEE SmartGrid-
Comm, 2011.

[13] P.M Ven, N. Hegde, L. Massoulié, and T. Salonidis, “Optimal Control
of End-User Energy Storage”, IEEE Trans. on Smart Grid, vol.4, no.2,
pp.789-797, 2013.

[14] R. Cremers and G. Bloemhof, “Storage Optimization in Distribution
Systems”, in Proc. of CIRED, 2011.

[15] W. Saad, Z. Han, and H. V. Poor, “Coalitional Game Theory for
Cooperative Micro-Grid Distribution Networks”, in Proc. of ICC, 2011

[16] Elia, “Wind-power Generation Dataset”, http://www.elia.be/en/grid-
data/power-generation/wind-power, 2012.

[17] Elia, “Solar-PV Power Generation Dataset”, http://www.elia.be/en/grid-
data/power-generation/Solar-power-generation-data/Graph, 2012.

[18] I. Richardson, M. Thomson, D. Infield and C. Clifford, “Domestic
Electricity Use: A High-resolution Energy Demand Model”, Elsevier
Energy and Buildings, vol. 42, no. 10, pp. 1878-1887, 2010.

[19] R. Weron, “Modeling and Forecasting Electricity Loads and Prices: A
Statistical Approach”, Wiley, 2007.

[20] A. Sfetsos, “A Comparison of Various Forecasting Techniques Applied
to Mean Hourly Wind Speed Time Series”, Renewable Energy, vol. 21,
no. 1, pp. 23-35, 2000.

[21] J. Machowski, J. W. Bialek, and J. R. Bumby, “Power Systems Dynam-
ics: Stability and Control”, Willey, 2008.

[22] K.C. Divya, and J. Ostergaard, “Battery Energy Storage Technology for
Power Systems An overview”, Electric Power Systems Research, vol.
79, no. 4, pp. 511 - 520, 2009.

[23] D. B. Shmoys, E. Tardos, and K. Aardal, “Approximation Algorithms
for Facility Location Problems”, in Proc. of ACM STOC, 1997.

[24] R. B. Myerson, “Game Theory, Analysis of Conflict”, Harvard Univer-
sity Press, 1981.


