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Abstract—The development of low-cost renewable energy gen-
erators transforms households into electricity prosumers. Given
that generation from renewable sources is highly volatile and does
not perfectly match the daily demand pattern of households, elec-
tricity storage has been proposed for balancing energy generation
and demand. In this work, we suggest that, due to the high cost
of Energy Storage Systems (ESS), prosumers should deploy and
share ESSs in a collaborative fashion. This will allow them to
leverage the temporal diversity in their energy generation and
consumption patterns, so as to reduce the cost paid to the main
grid and even to cover the deployment cost of ESSs.

We address the question ”"How much storage capacity should
be placed and in which locations in the distribution network?”.
In order to answer this question, we need also to consider how
much each prosumer should charge and discharge each deployed
ESS. The solution of this joint ESS placement-dimensioning and
utilization problem depends on the energy distribution losses,
expected electricity prices, and the diversity of prosumers’ pro-
files. Accordingly, we employ the Nash bargaining framework to
determine how this cost should be shared in a fair, and hence self-
enforcing, fashion among prosumers. Based on realistic demand
and generation traces, we show that collaborative prosumption
of energy through properly placed ESS can lead to significant
savings of up to 50% compared to a non-cooperating setting.

I. INTRODUCTION

Motivation. The decreasing cost of renewable Distributed
Energy Resources (DER) motivates individuals to install
small-scale units at their premises [1]. By deploying a so-
lar panel or a wind turbine, a household can minimize its
dependence on the main grid and eventually reduce its elec-
tricity bill. In this context, each household is both an energy
consumer and an energy producer, i.e. a prosumer. However,
more often than not, energy generation and demand are not
perfectly matched in the time domain (Fig. 1). This results in
temporal energy deficits and surpluses and hinders the energy
savings that DERs can offer.

Selling the energy surplus to the main grid, and buying in
case of deficit, addresses this issue only partially since it is
not always an optimal or even a feasible solution. Namely,
in many countries main grid operators buy electricity from
prosumers (when they have surplus) at low wholesale prices
and sell energy to them at higher retail prices'. Besides, houses
located in isolated areas may not be connected with the main
grid [2], hence making such transactions infeasible. To deal
with this inefficiency, installation of energy storage systems

'In Australia for example [6], retail electricity price is 30 cents/lkWh for
residential users, while any surplus from DERs is being sold to the main grid
at the wholesale price of 6 cents/kWh
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Fig. 1. Typical daily demand of a household and power generation patterns
from a residential solar panel and a wind turbine. Households are characterized
by diverse demand profiles resulting from the different daily schedules of their
habitants [18]. Diversity is also observed in the generation side depending on
the type of renewable installed [16],[17].

(ESS - hereinafter referred also as batteries) in close proximity
with DERs has been proposed. An ESS accumulates energy
surpluses, which can be then used to satisfy excess demand.
Given though the current high monetary cost of ESSs, the
option of installing one independently by each household is
out of question [3].

Instead, we propose here a collaborative scheme where
residential users form communities that share the costs and
benefits of distributed energy generation and storage. We
consider a small-scale community (within the microgrid)
which can range from a large neighborhood to a small town.
Households are characterized by diverse demand profiles given
the different daily schedules of their inhabitants. Similarly,
energy generation from a DER is intermittent within a day and
its pattern is mainly determined by the type of the renewable
and its location (Fig. 1). Prosumers can exploit temporal
diversity of power generation and demand through appropriate
placement of batteries that enables them to exchange any
electricity surplus with each other and hence to achieve
significant cost reduction.

The main question that arises in this context is how much
storage capacity should be installed and at which location
within the microgrid so that collaborative sharing by pro-
sumers is most beneficial and fair. In order to answer this
question, we need to derive, at the same time, the charging -
discharging decisions of prosumers for the deployed ESSs that
are realized in a smaller time scale. In turn, these decisions are
constrained by the actual needs of consumers and the energy
generation of their DERs. Clearly, the actual values of these



quantities are not known in advance, i.e., at the time of ESS
placement and dimensioning decisions. Nevertheless, recent
measurements [4]-[5] indicate that both demand and genera-
tion follow certain patterns. These findings have been exploited
by industry, for designing commercial storage solutions [2],[6]
and by academia for studying storage-related problems [7],[8].
We follow a similar approach here and propose a solution
framework for the ESS placement and dimensioning, for any
given user and DER generation pattern.

Optimal placement is affected by distribution losses. These
typically amount to 7% of the transferred energy but may
even reach 55% in extreme cases [9]. Placing ESS close to
generation locations minimizes losses while charging, but it
leads to increased losses when energy is transferred to remote
locations. On the other hand, a centrally placed battery enables
the aggregation of a larger number of prosumers with more
temporally diverse energy generation and demand patterns.
The community-wide objective is to minimize the total cost for
all prosumers, which captures both the electricity cost paid to
the main grid and the ESS deployment cost. A still unanswered
question though is: how should this cost be shared among
users of the community in a fair fashion, so as to incentivize
their participation in the collaborative energy prosumption
scheme?

Collaborative Prosumption of Energy. The proposed
scheme is inspired by the concept of collaborative consump-
tion (CoCo) that leverages trusted and networked communities
to optimally exploit scarce and hence expensive resources. The
term was coined in 1978 by Felson [10] and has been recently
revisited [11]. CoCo is a cost-efficient and eco-friendly con-
sumption model based on sharing, swapping, bartering, trading
or renting resources, which stands in contrast to traditional
ownership-based models. Today, an increasing number of
companies is building on this idea. Prominent examples are
peer-to-peer direct rental services such as Airbnb’.

The advent of smart grid enables the design of similar
models for energy demand and generation within a community
of prosumers. Storage of energy and distribution automation
enables residential users to exchange electricity with each
other. The former smooths out imbalance of demand and
supply, while the latter determines the flow of power within the
distribution network. For small-scale energy distribution net-
works, the short spatial and social distance of the participants
makes possible the design of CoCo models for electricity.

Related Work. The problem of optimal charging and
discharging a single ESS under time-varying electricity prices
has recently attracted significant research interest (see [12],
[13] and references therein). In contrast, the problem of op-
timal dimensioning and placing of electricity storage systems
within the distribution grid remains quite unexplored. In this
direction, the work in [8] investigates the voltage regulation
and peak-shaving performance benefits arising from battery
placement under an annual monetary budget constraint, when
energy transfer losses are negligible. In general though, opti-
mal battery placement and dimensioning decisions are affected

>More info about these companies and similar business cases can be found
in http://www.collaborativeconsumption.com/.

by the distribution losses, which are important in low-voltage
distribution networks.

The problem of placing a fixed amount of storage capacity
in the grid is studied in [7]. The objective is to minimize
grid operating cost assuming however that there is no cost
for storage devices. In a similar framework, a genetic al-
gorithm named PLATOS is developed in [14] to derive the
type, size and placement location of storage devices so as to
optimize certain criteria such as improving voltage profiles or
preventing overloads. In contrast to our work, PLATOS is a
proprietary heuristic algorithm. Besides, both [7] and [14] do
not consider how the investment cost should be shared among
community members. The benefits arising from cooperation
are studied in [15] but for the scenario of interconnected
microgrids that directly exchange power with each other.
However, neither the potential of energy storage nor the arising
challenges are addressed.

Contributions. In this work, we introduce the concept of
collaborative energy prosumption tailored for the smart grid.
We formulate and solve the respective ESS deployment cost
minimization problem. The size of the battery that will be
placed in each facility, as well as the subset of the prosumers
that will use it, depend on their energy generation and demand
profiles, and on energy distribution losses. Ideally, one would
like to match prosumers with diverse profiles located in close
proximity.

Once the optimal storage placement and utilization has been
derived, prosumers must agree on how they will share the
induced total energy and battery cost. Clearly, each prosumer
should be motivated by paying less when she participates in
the community compared to the respective cost if she inde-
pendently deploys an ESS (or simply if she buys energy from
the main grid). Moreover, prosumers expect to receive a fair
share of the total cost reduction achieved by the community.
Instead of equally sharing the costs among the participating
users, we employ the Nash bargaining solution concept to find
the fair, and hence self-enforcing, cost-sharing solution. The
main contributions of this work are:

e We propose a model for collaborative prosumption of
energy in a community that collectively deploys and uses
energy storage systems.

o We formulate the problem of ESS placement and dimen-
sioning, which should be jointly solved with charging
- discharging decisions, based on prosumers’ expected
demands and energy generation. This is a numerically
computable framework that is applicable to different
prosumer profiles and microgrid architectures, based on
consumption and production statistics [16], [17],[18].

o We employ Nash bargaining theory to find the fair share
allocation of the benefits from the energy and battery cost
reduction that is achieved by the community.

e Our trace-based simulations reveal that, for the current
and projected future cost of batteries, the proposed model
outperforms significantly the case where each prosumer
acts independently. We also investigate how the com-
munity benefit is affected by factors such as energy
distribution losses and the diversity of prosumer profiles.

The rest of the paper is organized as follows. In Section
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Fig. 2. Schematic diagram of a semi-urban neighbourhood consisting of
users equipped with renewables. Batteries indicate possible locations for ESS
deployment.

IT we introduce the system model and present a motivating
numerical example that highlights the various problem trade-
offs. In Section III we formally introduce the collaborative
energy prosumption problem and define the respective Nash
bargaining solution concept that yields a notion of fair cost
allocation. Finally, we present numerical results based on real
traces in Section IV and conclude our study in Section V.

II. SYSTEM MODEL

We consider the microgrid distribution network of Fig. 2
that comprises a set Z of I = |Z| energy prosumers and a set
N of N = |N| predetermined locations, e.g. junction boxes,
where an Energy Storage System (ESS) can be deployed.
Each prosumer owns a renewable Distributed Energy Resource
(DER), such as a wind-turbine or a solar panel, and has certain
time-varying energy needs. We assume time-slotted operation
and we study the system for a time period 7 consisting of T’
slots. Typical duration of a slot is 1-2 hours. Nevertheless, our
framework is applicable to scenarios of any time granularity,
which is determined by the input data.

Prosumer Model. Each prosumer 7 € 7 in each time slot

t may have an energy surplus or an energy deficit based on
whether her DER produces more or less energy than her needs.
We introduce the variables st > 0 and d! > 0 to denote surplus
and deficit respectively. We define also the vectors:
si=(st:t=12....T)d;=(d': t=1,2...,T),i €T
Clearly, for any given slot ¢, the surplus and deficit of
each prosumer i cannot be both positive (i.e., sidi = 0).
Also, empirical and statistical data [19] indicate that typically
individuals follow a specific routine, and hence the expected
energy demand pattern of households can be to some ex-
tent characterized. This is true in particular for larger-scale
prosumers e.g. industries. In addition, the expected energy
generation pattern of each DER can be approximated by an
average time sequence based on historical data [20]. The
extraction of expected demand and generation patterns is
performed through estimation techniques from historical data
regarding the behavior of renewables/users, but this is beyond
the scope of this work. Notice also that shared batteries
serve as aggregation points that smooth out uncertainty by
aggregating demand and generation of several closely-located
prosumers.

In case of surplus, the excess energy of the prosumer can
be used to charge the installed batteries. We denote with z!,
the amount of energy transferred from prosumer ¢ to battery
n in slot ¢ and we define the respective charging matrices:

;= (!, >0:neN t=1,...,T),Viel

Similarly, when dﬁ > 0, the prosumer can use energy from
the installed batteries to satisfy her additional energy needs.
We denote with 2!, the energy retrieved from battery n by
prosumer ¢ durlng slot t, and we introduce the respective
discharging matrices:

zi=(z;>0:neNt=1,...T),vViel

The amount of energy transferred from prosumer ¢ € 7
to battery n € N experiences losses which depend on their
distance and the amount of transferred energy [21]. The energy
loss function 6;,,(x) denotes the actual amount of energy that
reaches (i.e., excluding the losses) battery n € N, when z
units of energy are transferred from prosumer ¢ € Z. A typical
such function is [15], [21]:

Rm 2

Oin(z) =2 — lin(z) =2 — B — 72 (1

where the losses ¢;,,(+) are determined by the resistance R;,, >
0 of the distribution line connecting prosumer ¢ and ESS n,
the corresponding voltage V', and parameter S > 0 capturing
(voltage) transformation losses. For the distribution grids R =
0.2 Ohms per km, V' = 22kV and g = 0.02 are typical values
[21].

Depending on the microgrid scale, prosumers and batteries
may be close enough so that no transformation from low to
medium/high voltage is involved, i.e., 3 = 0. On the other
hand, low-voltage (thus high-current) power transfer incurs
comparatively high transfer losses per unit of distance. In other
scenarios, e.g., for rural settings, transformation losses may
be non-negligible. Clearly, different microgrid architectures
are characterized by different energy transfer loss functions.
Hereinafter, we formulate and discuss the problem using a
generic concave loss function 6;,,(x).

ESS Model. Each facility n € A is a candidate location
for deploying an Energy Storage System. The decision to be
made is whether an ESS will be placed in a certain facility
and, if so, what should be its capacity. We denote with y,, > 0
the capacity of the ESS deployed in facility n € NV, and define
the respective ESS deployment vector y = (y, > 0: n € N).

Notice that battery deployment is a one-shot decision (an
ESS is either deployed in a certain location for the entire time
horizon 7 or not), while the charging - discharging decisions
are taken on a slot-by-slot basis. The deployment is realized
once at a cost of w > 0 per unit of storage capacity, which
can be interpreted as the normalized (i.e. projected on the time
horizon 7") monetary cost of purchase and maintenance of the
battery [22].

Each ESS n € A has accumulated at slot ¢ a certain amount
of energy ¢!, which depends on the charging and discharging
decisions of prosumers in the previous time slots. We can
calculate this amount using the recursive formula:

¢, = min{y,, max{q), + Y O (al,) =Y 2 01} @)
i€Z =
Clearly, the accumulated energy can neither exceed the capac-
ity y,, of the battery, nor can it be negative.

Main Grid. The microgrid is connected to the main grid,
hence prosumers can buy energy whenever their deficit cannot
be satisfied by an ESS. Specifically, we denote with b! the
amount of energy that prosumer ¢ retrieves from the main grid
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Fig. 3. A migrogrid with 2 prosumers and 3 battery facilities. The surplus
and deficit vectors are s1 = (2,0,2,0,4,0,3,0), s2 = (0,2,0,5,0,3,0,2)
and d1 = (0,5,0,6,0,5,0,1), d2 = (5,0,1,0,2,0,6,0). The distribution
loss functions are 0;3(z) = 0.9z, 611(z) = =z, O12(x) = 0, O21(z) =
0, 022(xz) = x. The energy and battery costs for cases A, B and C are
(J{ = 17po, J§* = 14po), (JE = 8po + 4w, JF = 5py + Tw) and
(JS = 11.8pp + 1.8w) respectively.

during slot ¢. We define also the respective vector b; = (b! >
0:t=1,2...,7),Viel.

We assume that energy needs of prosumers are inelastic and
hence the following constraint should be satisfied:

b+ Z Oin(2t)=dl, teT,icT
neN

The main grid is assumed to charge a fixed price pg > 0
per unit of energy at all times, leading to a total cost of
DoteT pobt for prosumer i € Z. Under such a fixed pricing
model, prosumers buy from the main grid only to satisfy their
current needs (i.e., ESSs are not charged by the main grid).

Motivating Numerical Example. Next, we provide a
numerical example that highlights the various aspects and
tradeoffs of the problem. Consider the toy microgrid consisting
of Z = {1,2} prosumers and N = {1,2, 3} battery facilities
depicted in Fig. 3. We study the system for a single day,
divided in, say, 7" = 8 slots. In this setting, there are three
possible scenarios for the operation of the microgrid.

o Case A : The users have no batteries and buy (indepen-
dently) energy from the main grid when they have energy
deficits. Let J:* be the cost paid by i to the main grid.

e Case B : Each user deploys her own battery which
is charged whenever she has surplus and discharged
whenever she has an energy deficit. Let JZ be the total
cost paid for the energy from the main grid and battery
deployment.

e Case C' : Users collaborate and deploy in a central point a
battery which they share and jointly charge and discharge
according to their energy surpluses and deficits. The total
cost in that case, J<, depends also on the losses.

The cost values for each case and the basic system parameters
are depicted in Fig. 3. In this setting, we observe that, (¢) the
total cost in Case C' is always smaller than that in Case B,
ie. JG < JB + JP for any po, w. (ii) depending on the
values of py and w, prosumers may either benefit (JF < J;“)
or not (JiB > JZ»A) from using batteries. For example, when pg
is much smaller than w a prosumer may prefer to cover her
deficit directly from the main grid. (¢:7), for larger distribution
losses and/or when the energy generation and consumption
patterns of the prosumers are less diverse, it may be beneficial
for each user to deploy her own battery.

Therefore, the critical questions for this problem are the
following: (¢) What is the battery placement-dimensioning

policy y, and the charging-discharging policy (@, 2;);e7 that
minimize the total cost for energy use and battery deployment
for a community of prosumers? (i) How should this reduced
cost be shared in a fair, and hence self-enforcing fashion
among prosumers? To answer the first question we formulate
and solve an optimization problem. For the second question,
we model the collaborative prosumption game as a multi-
person Nash bargaining game.

IIT. THE COLLABORATIVE PROSUMPTION GAME

The Minimum Cost Problem. The objective of the pro-
sumers is to minimize the cost for the energy they buy from
the main grid and the cost for battery deployment. Specifically,
the optimal policies can be derived from the solution of
the following Collaborative Prosumption (CPro) optimization

problem:
min Z Zpobﬁ +w Z Yn
(xi,yi,zi,bi)iez teT iel neN
S.t.
Gt = au D Onlel) =Y s nENET ()
i€z, i€l
0<¢, <y, neN, teT “)
e S G =d e TaeT
neN
fongsg’iez,tGT ©)
neN
Y di<dh, neN,teT @
i€l

wl, >0,2L,>0,00 >0y, >0neN,ieZ,teT ()

where py and w are the main grid energy price and the
projected battery cost respectively®. Constraints (3)-(4) are the
decomposed version of (2), equation (5) captures the fact that
demands are inelastic and constraint (6) says that the total
charging performed by a prosumer within a slot is bounded
by her respective surplus. Finally, constraint (7) dictates that
the retrieved energy from each battery is upper-bounded by
the accumulated energy in each time slot.

CPro is a problem with a linear objective function and
a convex and compact constraint set. The obtained solution
(zf,yf, 25, bl )iz yields a total cost:

Jee =YY pobl"+w >y up ©)

teT i€l neN

The value of J.. decreases as the diversity of energy con-
sumption and generation patterns of prosumers increases. For
example, if the generation and consumption patterns of two
prosumers are symmetric, then they can fully satisfy each
other’s needs in each slot. Moreover, the total amount of
deployed storage depends on the relative values of battery and
energy cost. Finally, the battery placement depends on distri-
bution losses (for low losses, central locations are preferable).

The Bargaining Game. In order to study how the total
battery deployment and energy cost should be distributed

3The model can be directly extended to include battery installation costs.
This would transform the problem into an NP-hard facility location problem
[23], which can be solved by an exhaustive search method using, for example,
CPLEX. Notice that the ESS deployment and dimensioning problem is solved
offline.



among prosumers, we employ the Nash bargaining theory [24].
The so-called Nash bargaining solution (NBS) determines the
portion of jointly produced welfare each player should receive
S0 as to agree to cooperate with the other players. The NBS
is fair, self-enforcing and also Pareto optimal.

In detail, a bargaining problem among a set Z of I = |Z|
players is defined by the set of all feasible allocations (possible
outcomes) J C R’, and the disagreement points D C R’ for
each player. For the CPro problem, the latter are the costs
incurred to the prosumers when they do not collaborate with
each other. For each prosumer ¢ we can find the disagreement
cost J¢ by solving CPro for Z = {i} and N = {i}. Formally,
we define the bargaining problem Gp = (Z, J,D) where the
set of possible outcomes is:

T =A{(J1, Jay . J1) 2 > Ji=Jee, J; 20, Vi€ T}
i€T
and D = {J{, J4,...,J¢}. The NBS is the vector J¥ =
(J¥)iez derived by the solution of the following Nash bar-

gaining problem (NBP):

max ez (7' = Ji) (10)

(1)

The NBP has certain desirable properties as it stated by the
following lemma.

Lemma I: NBP admits always a unique optimal solution.

Proof: Objective function (10) is strictly concave since it

is a composition of (strictly) concave functions. Additionally,
the constraint set is compact, convex and non-empty. Notice
that constraint (11) can always be strictly satisfied by some
solution point. This holds because the collaborative solution
contains the independent (standalone) solution where each
prosumer acts on his own (placement and usage of battery per
prosumer), as a special case solution. The latter is achieved if
one sets the respective charging and discharging decisions of
the prosumer to zero for the other batteries. |

Notice that here we have implicitly assumed that users are
risk-neutral and hence they have linear utility functions for cost
[24]. In general though, one can consider users with different
sensitivity in cost variations, e.g. being risk-averse. In this
case, the objective of the NBP will change by substituting J;
with the respective utility functions, i.e., U;(.J;). The solution
methodology however is the same.

st S <JL VieT

IV. NUMERICAL RESULTS

In this section, we use real demand and generation traces in
order to quantify the benefits of collaborative energy prosump-
tion. We consider a neighborhood of 10 houses, each equipped
with either a solar panel or a wind turbine. For the wind-
turbine plants we use the wind-generation data of [16], while
for the photovoltaics we use data from [17]. Demand data for
each house are generated according to the synthetic electricity
consumption traces of [18]. We assume a fixed electricity price
po = 0.3 $/kWh, and that distribution losses are linear in the
amount of transferred energy and in distance.

Initially, we investigate the cases when collaborative place-
ment of energy storage within the distribution network is
preferable. In Fig. 4 we depict the impact of distribution

losses on the actual cost improvement >, 7 J& — J.. due
to collaboration over the independent deployment at house
premises. Initially, we focus on the current market scenario
by using the typical battery price of 500 $/kWh (Fig. 4(a)).
Given that the lifetime of a battery is 5 years, we calculate
the corresponding normalized cost w. In order to investigate
the impact of temporal diversity of users’ demand-generation
profiles on cost improvement, we consider three scenarios:
a low-diversity, a medium-diversity and a high-diversity one.
We observe that diversity does increase the benefits of col-
laboration. In addition, low losses favour the collaborative
deployment of batteries, while placing batteries at the user
side is meaningful only for distant enough prosumers, as
indicated by the almost zero benefit when losses are high. In
the current status where battery deployment cost is significant,
cooperation is generally the dominant strategy.

Next, we depict in Fig. 4(b) a scenario based on the pro-
jected battery prices so as to investigate the future behaviour
of the collaborative prosumption approach. Given that battery
prices drop by a rate of 5% per year the depicted scenario
of a battery price of 100 $/kWh is not expected to happen
until 2030. In this case, due to lower battery cost, the benefits
of collaboration are less evident, and deploying batteries at
the user side is also a valid option. However, given that
distribution losses are generally low (significantly lower than
20% in developed countries), the collaborative prosumption
approach will be the road ahead for at least the next 20 years.

Finally, we consider the impact of battery cost w on the
total battery capacity installed, and the total cost that has to
be paid by the community. We consider a typical scenario
where losses to the most distant battery location are 7%. In
Fig. 5 we compare the total battery capacity and energy cost
achieved by the collaborative prosumption approach and the
non-cooperative reference strategy. As expected, high battery
prices lead to less electricity storage being deployed and higher
cost.

In both cases, battery placement reduces electricity cost
by covering energy deficits from stored energy, previously
generated by renewables. Collaborative prosumption though,
can further amplify the resulting financial benefits by enabling
users to exchange energy and by exploiting diversity of
demand and generation of different households. Thus, the
collaborative approach achieves a lower cost with less storage
capacity. In particular, in this scenario of low distribution
losses, collaboration leads to daily savings of 4$ (i.e. > 1200
$ annually), which is more than double the savings of the
reference strategy. Interestingly, the amount of battery installed
is generally a piece-wise constant function of battery cost,
indicating the robustness of battery placement in system pa-
rameter deviations. In a plateau, the cost reduction arises from
the smaller investment that is required for the same amount
of electricity storage.

V. CONCLUSIONS

This work provides a first understanding of the reasons that
hinder large-scale penetration of renewables and electricity
storage in the residential sector. We identified collaboration
of households as the missing piece that could eventually bring
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electricity storage into the distribution network and unleash
the potential of renewable energy resources. We proposed a
collaborative prosumption scheme that exploits diversity of
demand and generation through batteries so as to minimize the
electricity cost of a community. Based on realistic generation
and demand data, we showed that collaborative battery deploy-
ment is meaningful even for the current high cost of batteries
and without any subsidy, while additional benefits may arise
from ancillary services enabled by collaborative storage. We
believe that our work paves the way for small-scale user-
centric collaborative energy prosumption architectures that
will exploit upcoming storage availability [3].
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